	Designer Embodied Carbon (EC) Calculation - Civil & Electrical											
	Build Table Most Contributing Materials 1% Embodied Carbon A1-5											
Project Name:	Woodley - Romiley Cable Fulid Filled Cable Replacement											
Project Scope:	vV Single Circuit 400mm2 Cu XLPE. Route Length 2255m.											
Project Embodied Carbon Breakdown and Totals t(Co2e):			Calculation Date:	18/09/2024								
Total A1-5w	269.58	Note: Total A1-5w t(CO2e): Type 1&2 + Type 3&4 = Ans	Project Code:	50011825								
A5a	3.15		Project Completed in Financial Year:	FY24								
Total A1-5 t(CO2e)	272.74	Note: Total A1-5t(CO2e): Total A1-5w + A5a = Ans	Estimated Cost of Civil Build(£): (To Estimate A5a)	£450,639.00								

Roadway	From	То			UNMADE GROUND IMPORTED MAT. (m)	Road Type 1&2 Imported Material (m)	Road Type 384 Imported Material (m)	Total
GROUNDS OF WOODLEY SUSTATION	CONNECTION POINT ONTO CABLE BOX	JOHN STREET			40			40
JOHN STREET	GROUNDS OF WOODLEY SUBSTATION	STOCKPORT ROAD STREET	1				25	25
STOCKPORT ROAD EAST	JOHN STREET	REDHOUSE LANE	1			83		83
REDHOUSE LANE	STOCKPORT ROAD EAST	HIGHER BENTS LANE					646	646
HIGHER BENTS LANE	REHOUSE LANE	QUEEN'S ROAD				287		287
QUEENS ROAD	HIGHER BENTS LANE	PRINCES ROAD					47	47
PRINCES ROAD	QUEENS LANE	BANK ROAD					128	128
BANK ROAD	PRINCES ROAD	RUSKIN GROVE					152	152
RISKIN GROVE	BANK ROAD	KINGS ROAD					150	150
KINGS ROAD	RUSKIN GROVE	BERRYCROFT LANE	1				34	34
BERRYCROFT LANE	KINGS ROAD	SCHOOL BROW				56		56
SCHOOL BROW	BERRYCROFT LANE	STOCKPORT ROAD				325		325
STOCKPORT ROAD EAST	SCHOOL BROW	GREEN LANE				200		200
GREEN LANE	STOCKPORT ROAD	GROUNDS OF ROMILEY SUSTATION	1				32	32
GROUNDS OF ROMILEY SUBSTATION	GREEN LANE	CONNECTION POINT ONTO CABLE BOXES					50	50
								0
			Total		40	951	1,264	2,255
	Desktop Co	ontigency	0%		0	0	0	0
				40	951	1 264	2.255	

Koad & Cable Calculations Table																
		Cable Type & Excavation	Cable/Duct Number	Units values to input in conversion to tonnes cell	Conversion to tonnes		ECF k	g(CO2e/	lkg)		Embodied	Carbon t(CO	2e)		Total EC t(CO2e)	Notes / Comments
				conversion to tonnes cell	tonnes		A1-3	A4	A5w	A1-3	A4	A5w	A1-5w		A1-5w	
ype t 82 High Voltage		Asphalt, 8% (Bitumen) binder content (by mass) weight @ 2322kg / m3		input value in m3 (in 'conversion to tonnes' cell)	38	88.236	0.086	0.005	0.006	7.588296	0.44118	0.50974	8.539215372	Binder/ Suface Course layer (Tarmac)		
		Ready mix concrete 32/40. 2350kg / m3		input value in m3 (in 'conversion to tonnes' cell)	68.47	160.9045	0.132	0.005	0.008	21.239394	0.8045225	1.32183	23.36574697	Base laver (Concrete)	23.36574697	
		Ready Mix Expanding Foam Concrete weight @ 4.5kg / m3		input value in m3 (in 'conversion to tonnes' cell)	0	0	0.188	0.005	0.011	0	0	0	0	Base layer (Concrete)	23.365/469/	
		Engineering MOT		input value in m3 (in 'conversion to tonnes' cell)	79.88	119.82	0.005	0.005	0.001	0.5991	0.5991	0.17781	1.37601288	Sub - base layer (Aggregate / MOT / DTP)	2.77246728	Depth of soil to be calculated @ 50% imported and 50% backfill
		Aggregate, 1500kg/m3 Note: aggregate density will change per m3 based on type and mm to dust of material.		input value in m3 (in 'conversion to tonnes' cell)	0	0	0.005	0.005	0.001	0	0	0	0			
	Voltage	Sand, 1600kg/m3		input value in m3 (in 'conversion to tonnes' cell)	76	121.6	0.005	0.005	0.001	0.608	0.608	0.18045	1.3964544			
	A High	Waste material content. 1m3 = 1.43 tonnes.		input value in m3 (in 'conversion to tonnes' cell)	304.32	435.1776		0.005	0.001	0	2.175888	0.53048	2.706369494	Excavations & Backfill laver	3,650239562	
	Low &	Soil assumed 5% cement content. 1m3 = 1.9 tonnes of clay soil.		0.943870068	Excertations & beckin hayer											
		Cable Ducts PVC weight @ 200mm dia 4.44kg / m	0	input value in meters (in 'conversion to tonnes' cell)	0	0	3.23	0.005	0.172	0	0	0	0			
		Cable Ducts PVC weight @ 150mm dia 3.3kg / m	1	input value in meters (in 'conversion to tonnes' cell)	951	3.1383	3.23	0.005	0.172	10.136709	0.0156915	0.54107	10.69347166	Cable Ducts	17.69283494	
	-	Cable Ducts PVC weight @ 100mm dia 2.16kg / m	1	input value in meters (in 'conversion to tonnes' cell)	951	2.05416	3.23	0.005	0.172	6.6349368	0.0102708	0.35416	6.999363271			
		Cable 33kV (New) : weight @ 5.22kg/m	3	input value in meters (in 'conversion to tonnes' cell)	951	14.89266	3.81	0.16	0.04	56.7410346	2.3828256	0.59392	59.71777948	Cables	59.71777948	Until manufacturers ECF values are available the ECF value for New Cop used for Power Cables.
		Cable 6.6 / 11kV (New) : weight @ 1.7kg/m	0	input value in meters (in 'conversion to tonnes' cell)	0	0	3.81	0.032	0.039	0	0	0	0	Cables	GU. 1777940	
														A1-5w t(CO2e)	115.7382836	

	Road & Cable Calculations Table															
		Cable Type & Excavation		Units values to input in	Conversion to		ECF k	ıg(CO2e	v/kg)		Embodied	Carbon t(CO	2e)		Total EC t(CO2e)	Notes / Comments
				conversion to tonnes cell	tonnes	(t)	A1-3	A4	A5w	A1-3	A4	A5w	A1-5w		A1-5w	
		Asphalt, 8% (Bitumen) binder content (by mass) weight @ 2322kg / m3		input value in m3 (in 'conversion to tonnes' cell)	50.56	117.40032	0.086	0.005	0.006	10.0964275	0.5870016	0.67822	11.36165077	Binder/ Suface Course layer (Tarmac)		
		Ready mix concrete 32/40. 2350kg / m3		input value in m3 (in 'conversion to tonnes' cell)	91	213.85	0.132	0.005	0.008	28.2282	1.06925	1.75678	31.05422775	Base layer (Concrete)	31.05422775	
		Ready Mix Expanding Foam Concrete weight @ 4.5kg / m3		input value in m3 (in 'conversion to tonnes' cell)	0	0	0.188	0.005	0.011	0	0	0	0			
		Engineering MOT		input value in m3 (in 'conversion to tonnes' cell)	106.18	159.27	0.005	0.005	0.001	0.79635	0.79635	0.23636	1.82905668			Depth of soil to be calculated @ 50% imported and 50% backfill
		Aggregate, 1500kg/m3 Note: aggregate density will change per m3 based on type and mm to dust of material.		input value in m3 (in 'conversion to tonnes' cell)	0	0	0.005	0.005	0.001	0	0	0	0	Sub - base layer (Aggregate / MOT / DTP)		
	ttag e	Sand, 1600kg/m3		input value in m3 (in 'conversion to tonnes' cell)	101.1	161.76	0.005	0.005	0.001	0.8088	0.8088	0.24005	1.85765184		l .	
pe 3 & 4	High Vo	Waste material content. 1m3 = 1.43 tonnes.		input value in m3 (in 'conversion to tonnes' cell)	404.48	578.4064		0.005	0.001	o	2.892032	0.70508	3.597109402	Excavations & Backfill laver	4 8517429	
È	Low&	Soil assumed 5% cement content. 1m3 = 1.9 tonnes of clay soil.		input value in m3 (in 'conversion to tonnes' cell)	106.18	201.742		0.005	0.001	0	1.00871	0.24592	1.254633498	Excertations & Beckin hayer	4.011425	
		Cable Ducts PVC weight @ 200mm dia 4.44kg / m	0	input value in meters (in 'conversion to tonnes' cell)	0	0	3.23	0.005	0.172	0	o	0	0			
		Cable Ducts PVC weight @ 150mm dia 3.3kg / m	1	input value in meters (in 'conversion to tonnes' cell)	1264	4.1712	3.23	0.005	0.172	13.472976	0.020856	0.71915	14.21298442	Cable Ducts	23.51602877	
		Cable Ducts PVC weight @ 100mm dia 2.16kg / m	1	input value in meters (in 'conversion to tonnes' cell)	1264	2.73024	3.23	0.005	0.172	8.8186752	0.0136512	0.47072	9.303044348			
		Cable 33kV (New) : weight @ 5.22kg/m	3	input value in meters (in 'conversion to tonnes' cell)	1264	19.79424	3.81	0.16	0.04	75.4160544	3.1670784	0.78939	79.37252709	Cables	79.37252709	Until manufacturers ECF values are available the ECF value for New Copper is used for Power Cables.
		Cable 6.6 / 11kV (New) : weight @ 1.7kg/m	0	input value in meters (in 'conversion to tonnes' cell)	0	o	3.81	0.032	0.039	0	0	0	0			
														A1-5w t(CO2e)	153.8428858	

		Caculation are based on Embodied Carbon Factors (ECF) to E kg(CO2e/kg) = Embodied Carbon t(CO2e). Sourced IstructE	xtract & Manufacture the material Calculated as: Tonr	nes x ECF								
Key:		Calculation based on kg of CO2e produced by Distance travelle Carbon t(CO2e). Distances referenced from IStructE: Locally s 320km = 0.32kg(COe) / European sourced within 1500km = 0.	Calculating	for Cable & Duc								
	A5w	Calculation based on the Waste Factor (WF) of Materials. So but ECF x Distance Travelled x Distance travelled forwaste mater ASw / Example, assumed waste of concrete is : 0.053 x (A1-3 x :	rial taken to lanfill (C2) × C02 used for processing d									
		Typical assumed costat stage A1-5 of build is 50% so: 700kg(= Ans t(CO2e): Soruced IstructE	Key:		Designer to fill i	n all cells highlighte	Reference note:	Calculations & Embodied Carbon				
Note:		Please fill in all relavent cells highlighted in GREY - Profile Depths for Type 182: Tarmac top layer = 100mm Concrete layer = 180mm		The "Embodied Cashon (ICO26) colis are using a staffic light system to indicate, low-high contributing materials. Before this cell in an example of how the colour format works for each material and what they indicate.							factors for materials used in the tableare sourced from the Brisa (ICE) & IstructE	
		MOT = 210mm Backfil = 210mm Sand layer = 200mm (+/-300mm) Material Waste = Estimate 80% of total Excavated material			Low		Medium		High	Ref for material Emobdied Carbon Factors:	A BSRIA guide: Hammond.G etal., 'Embodied Carbon'., The inventory of Cabon and Energy., (ICE).	
		Profile Depths for Type 3&4: Tarmac top layer = 100mm Concrete layer = 50mm MOT = 275mm			0	12.5	25	37.5	50		Embodied Carbon - The Inventory of Carbon and Energy (ICE) (streenbuildinsencyclopaedia.uk)	
		Backfill = 275mm Sand layer = 200mm (+/- 300mm) Material Waste = Estimate 80% of total Excavated material								Ref for calculating Embodied Carbon A1-	The Institution of Structural Engineers 'How to calculate embodied carbon'.	
										5& Cell colour formatting:	A brief guide to calculating embodied carbon (istructe.org)	

Project Photographs / Drawings