	Designer Embodied Carbon (EC) Calculation - Civil & Electrical												
	Build Table Most Contributing Materials 1% Embodied Carbon A1-5												
oject Name: Aberon - PPG 33k/ Replacement.													
Vroject Scope: 3 x fc 400mm2 Cu XLPE 33AV Cable - Single Circuit. Route Length 3700m.													
Project Err	bodied Carbon Breakdown and Totals t(Co2e):		Calculation Date:	18/09/2024									
Total A1-5w	408.03	Note: Total A1-5w (CO2e): Type 1&2 + Type 3&4 = Ans	Project Code:	50018511									
A5a	7.65		Project Completed in Financial Year:	FY24									
Total A1-5 t(CO2e)	415.68	Note: Total A1-5t(CO2e): Total A1-5w + A5a = Ans	Estimated Cost of Cable Works (£): (To Estimate A5a)	£1,092,628.00									
								UNMADE	Road Type 182	Road Type 384			

Roadway	From	То			IMPORTED MAT. (m)	Imported Material (m)	Imported Material (m)	Total
Grounds of Atherton BSP	Existing Cable Tails / Cable Box	Jubilee Park			60			60
Jubilee Park	Grounds of Atherton BSP	Leigh Road				130		130
Leigh Road	Jubilee Park	Westborne Ave					815	815
Westborne Ave	Leigh Road	Atherleigh Ave				96		96
Atherleigh Way	Westborne Ave	Westborne Ave					17	17
Westborne Ave	Atherleigh Way	Kirkhall Lane				355		355
Kirkhall Lane	Westborne Ave	West Leigh Lane					65	65
West Leigh Lane	Kirkhall Lane	Nel Pan Lane				567		567
Nel Pan Lane	West Leigh Lane	Leigh Road				995		995
Leigh Road	Nel Pan Lane	Coal Pit Lane					545	545
Caol Pit Lane	Leigh Lane	Joint on to Existing 3 x 1c 500mm2 Cu Cable					55	55
								0
								0
								0
								0
								0
		60	2,143	1,497	3,700			
	Desktop Contigency		0	0	0	0		
					60	2143	1,497	3,700

Road & Cable Calculations Table															
	Cable Type & Excavation	Cable/Duct Number	Units values to input in	Conversion to	Quantity	ECF kg(CO2e/kg)		s/kg)	Embodied Carbo			2e)	Total EC t(CO2e)		Notes / Comments
			conversion to tonnes cell	tonnes	(1)	A1-3	A4	A5w	A1-3	A4	A5w	A1-5w		A1-5w	
	Asphalt, 8% (Bitumen) binder content (by mass) weight @ 2322kg / m3		input value in m3 (in 'conversion to tonnes' cell)	85.72	199.04184	0.086	0.005	0.006	17.1175982	0.9952092	1.14986	19.26267215	Binder/ Suface Course layer (Tarmac)	19.26267215	
	Ready mix concrete 32/40. 2350kg / m3		input value in m3 (in 'conversion to tonnes' cell)	154.3	362.605	0.132	0.005	0.008	47.86386	1.813025	2.9788	52.65568508	Receileurs (Constate)	E2 85589579	
	Ready Mix Expanding Foam Concrete weight @ 4.5kg / m3		input value in m3 (in 'conversion to tonnes' cell)	0	0	0.188	0.005	0.011	0	0	0	0	Base layer (Concrete)	80000000	
	Engineering MOT		input value in m3 (in 'conversion to tonnes' cell)	180	270	0.005	0.005	0.001	1.35	1.35	0.40068	3.10068		T/ 6.250787136	
	Aggregate, 1500kg/m3 Note: aggregate density will change per m3 based on type and mm to dust of material.		input value in m3 (in 'conversion to tonnes' cell)	0	0	0.005	0.005	0.001	0	0	0	0	Sub - base layer (Aggregate / MOT / DTP)		
voltage	Sand, 1600kg/m3		input value in m3 (in 'conversion to tonnes' cell)	171.44	274.304	0.005	0.005	0.001	1.37152	1.37152	0.40707	3.150107136			
rype 18	Waste material content. 1m3 = 1.43 tonnes.		input value in m3 (in 'conversion to tonnes' cell)	685.76	980.6368		0.005	0.001	o	4.903184	1.1954	6.098580259	Evenuations & Baskfill Javar	8 225478259	
Low 8	Soil assumed 5% cement content. 1m3 = 1.9 tonnes of clay soil.		input value in m3 (in 'conversion to tonnes' cell)	180	342		0.005	0.001	0	1.71	0.4169	2.126898	Excavations a Backini layer	0.2204/0209	
	Cable Ducts PVC weight @ 200mm dia 4.44kg / m	0	input value in meters (in 'conversion to tonnes' cell)	0	0	3.23	0.005	0.172	0	0	0	0			
	Cable Ducts PVC weight @ 150mm dia 3.3kg / m	1	input value in meters (in 'conversion to tonnes' cell)	2143	7.0719	3.23	0.005	0.172	22.842237	0.0353595	1.21926	24.09685571	Cable Ducts	24.09685571	
	Cable Ducts PVC weight @ 100mm dia 2.16kg / m	0	input value in meters (in 'conversion to tonnes' cell)	0	0	3.23	0.005	0.172	0	0	0	0			
	Cable 33kV (New) : weight @5.2kg/m	3	input value in meters (in 'conversion to tonnes' cell)	2143	33.4308	3.81	0.032	0.039	127.371348	1.0697856	1.29043	129.7315625	Cables	129 7315625	Until manufacturers ECF values are available the ECF value for New Copper is used for Power Cables
	Cable 6.6 / 11kV (New) : weight @ 1.7kg/m	0	input value in meters (in 'conversion to tonnes' cell)	0	0	3.81	0.032	0.039	0	0	0	0	Cables		
													A1-5w t(CO2e)	240.2230408	

	Road & Cable Calculations Table															
		Cable Type & Excavation	Cable/Duct Number	Units values to input in	Conversion to	Quantity	ECF k	g(CO2e	/kg)		Embodied (Carbon t(CO)	2e)		Notes / Comments	
				conversion to tonnes cell	tonnes	(0)	A1-3	A4	A5w	A1-3	A4	A5w	A1-5w		A1-5w	1
		Asphalt, 8% (Bitumen) binder content (by mass) weight @ 2322kg / m3		input value in m3 (in 'conversion to tonnes' cell)	59.88	139.04136	0.086	0.005	0.006	11.957557	0.6952068	0.80324	13.4560057	Binder/ Suface Course layer (Tarmac)	13.4560057	
		Ready mix concrete 32/40. 2350kg / m3		input value in m3 (in 'conversion to tonnes' cell)	107.78	253.283	0.132	0.005	0.008	33.433356	1.266415	2.08072	36.78049085	Ross Inver (Conversio)	36.78049085	
		Ready Mix Expanding Foam Concrete weight @ 4.5kg / m3		input value in m3 (in 'conversion to tonnes' cell)	0	0	0.188	0.005	0.011	0	0	0	0			
		Engineering MOT		input value in m3 (in 'conversion to tonnes' cell)	125.75	188.625	0.005	0.005	0.001	0.943125	0.943125	0.27992	2.1661695			
3e 3 & 4		Aggregate, 1500kg/m3 Note: aggregate density will change per m3 based on type and mm to dust of material.		input value in m3 (in 'conversion to tonnes' cell)	0	0	0.005	0.005	0.001	o	0	0	o	Sub - base layer (Aggregate / MOT / DTP)	4.366687644	
	tage	Sand, 1600kg/m3		input value in m3 (in 'conversion to tonnes' cell)	119.76	191.616	0.005	0.005	0.001	0.95808	0.95808	0.28436	2.200518144			
	High Vo	Waste material content. 1m3 = 1.43 tonnes.		input value in m3 (in 'conversion to tonnes' cell)	479	684.97		0.005	0.001	0	3.42485	0.83498	4.25982843	Excavations & Backfill laver	5 745703005	
f	Low &	Soil assumed 5% cement content. 1m3 = 1.9 tonnes of clay soil.		input value in m3 (in 'conversion to tonnes' cell)	125.75	238.925		0.005	0.001	0	1.194625	0.29125	1.485874575			
		Cable Ducts PVC weight @ 200mm dia 4.44kg / m	0	input value in meters (in 'conversion to tonnes' cell)	0	0	3.23	0.005	0.172	0	0	0	0			
		Cable Ducts PVC weight @ 150mm dia 3.3kg / m	1	input value in meters (in 'conversion to tonnes' cell)	1497	4.9401	3.23	0.005	0.172	15.956523	0.0247005	0.85172	16.8329412	Cable Ducts	16.8329412	
		Cable Ducts PVC weight @ 100mm dia 2.16kg / m	0	input value in meters (in 'conversion to tonnes' cell)	0	0	3.23	0.005	0.172	0	0	0	0			
		Cable 33kV (New) : weight @ 5.2kg/m	3	input value in meters (in 'conversion to tonnes' cell)	1497	23.3532	3.81	0.032	0.039	88.975692	0.7473024	0.90143	90.62442792	Cables	00.82443702	Until manufacturers ECF values are available the ECF value for New Copper is used for Power Cables
		Cable 6.6 / 11kV (New) : weight @ 1.7kg/m	0	input value in meters (in 'conversion to tonnes' cell)	0	0	3.81	0.032	0.039	0	0	0	0	Cables	50.02492792	
														A1-5w t(CO2e)	167.8062563	1

Project Photographs / Drawings

All materials calculated in above sheet, includes only imported materials

	A1-3	Caudation are based on Embodied Carbon Factors (ECF) to Extract & Manufacture the material Calculated as: Tonnes x EC kg(C02a/kg) = Embodied Carbon t(C02a). Sourced IstructE								
Key:		Calculation based on kg of CO2e produced by Distance travelled in km, ECF based on: Tonnes x ECF kg(CO2ekg) = Embod (ECO2e), Distances referenced from (Struct): Locally sourced within Stem = 40.05kg(CO2) / Nationally Sourced within 3 5.25kg(CO2); Expense neuroed within 150km = 1.5 kg(CO2); Sourced Instruct	died Carbon 20km =	Calculatin	g for Cable & Duc	ts note:				
	A5w	Calculation based on the Waste Factor (WF) of Materials. So brick has a waste factor of 20%, Steel 1% etc: Material WF/i(x Distance Travelled x Distance travelled forwaste material taken to lamifil (C2) x C02 used for processing disposal (C3- Example, assumed waste of concrete b = 0.003 x (A1-5 x A # X C2 X C3-4) = & A# = Sourced IStructE	When addi calulate th	ng in cable length e embodied carbo	bers for the table to					
		Typical assumed costat stage A1-5 of build is 50% so: 700kg(CO2e) per £100,000 so: 0.7 x (cost of build +100,000)= Ans t(CO2e): Soruced IstructE	Key:		Designer to fill i	n all cells highlighte	ed in light grey		Reference note:	Calculations & Embodied Carbon
Note:		Please fill in all reducent cells highlighted in GREY - Profile Depths for Type 1&2: Concete layer = layer = 100mm NOT = 210mm		The 'Embor low- high or format work	died Carbon t(CO2) ontributing material is and what they in	factors for materials used in the tableare sourced from the Brisa (ICE) & IstructE				
		Backfill - 2010mm (Schoomn) Meterial Meterial Sand sayer - 2000m (Schoomn) School - 2000 (School - 2000 (School - 2000) (Sch		Low		Medium		High	Ref for material Emobdied Carbon Factors:	A BSRIA guide: Hammond.G etal., 'Embodied Carbon'., The inventory of Cabon and Energy., (ICE).
		MOT = 275mm Backfil = 275mm Sand layer = 200mm (+/: 300mm) Mahridi Wather = Feitmate 80% of total Excavated material		0	12.5	25	37.5	50		Embodied Carbon - The Inventory of Carbon and Energy (ICE) (greenbuildingencyclopaedia.uk)
									Ref for calculating Embodied Carbon A1- 5& Cell colour formatting:	The Institution of Structural Engineers 'How to calculate embodied carbon'.
										A brief guide to calculating embodied carbon (istructe.org)