Designer Embodied Carbon (EC) Calculation - Civil & Electrical												
Build Table Most Contributing Materials 1%->. Embodied Carbon A1-5												
Project Name:	set Name. Hindley Green - PPG 33kV Gas Filled Cable Replacement											
Project Scope: 33kV Solid Cable - Single Circuit 830mm 2.4. XLPE. Route Length 1870m.												
Project E	Embodied Carbon Breakdown and Totals t(Co2e):			Calculation Date:	18/09/2024							
Total A1-5	I-Sw 373.01 Note: Total A1-Sw		(CO2e): Type 1&2 + Type 3&4 = Ans	Project Code:	50021911]						
A5	5a 2.55			Project Completed in Financial Year:	FY24							
Total A1-5 t(CO2e	2e) 375.56	Note: Total A1-5t(C	O2e): Total A1-5w + A5a = Ans	Estimated Cost of Cable Works(E): (To Estimate A5a)	£364,948.00							
Roadway				From		To			FOOTPATH IMPORTED MAT. (m)	Road Type 1&2 Imported Material (m)	Road Type 3&4 Imported Material (m)	Total
Lane (363776 - 40222	26)		Joint Position		Leigh Road A	578				57		57
od A578 (363816 - 40	02228)		Coal Pit Lane		Thomas Stree	t.				640	832	832
Street (364041 - 402988)			Thomas Street		Atherton Rose	4				58		58
ee (303300 - 403170) 1 Road (363800 - 403220)			Fast Street		L incroft Road					30	162	162
oad (363465 - 40329	90)	Atherton Road		Footpath					85		85	
(363415 - 403223)		Lincroft Road		Brecon Drive				52			52	
Drive (363370 - 403215	5)Hindley Green Grounds (363375 - 403263)		Footpath		Hindley Green	Sub Grounds				80		80
		Brecon Drive		Joint Position					34		34	
						-						0
			1									0
							Total		52	824	994	1,870
				Decktop Cor			1000					0

	Road & Cable Calculations Table															
Cable Type & Excavation		Cable/Duct Number	Units values to input in	Conversion to	Quantity	ntity ECF kg(CO2e/kg		/kg)	Embodied Carbo			2e)	Total EC t(CO2e)		Notes / Comments	
				conversion to tonnes cell	tonnes	(!)	A1-3	A4	A5w	A1-3	A4	A5w	A1-5w		A1-5w	
		Asphalt, 8% (Bitumen) binder content (by mass) weighted @ 2322kg / m3		input value in m3 (in 'conversion to tonnes' cell)	35	81.27	0.086	0.005	0.006	6.98922	0.40635	0.4695	7.86506679	Binder/ Suface Course layer (Tarmac)	7.86506679	
		Ready mix concrete 32/40. 2350kg / m3		input value in m3 (in 'conversion to tonnes' cell)	63	148.05	0.132	0.005	0.008	19.5426	0.74025	1.21623	21.49908075	Base laver (Concrete	04 400000TF	
	Low & High Voltage	Ready Mix Expanding Foam Concrete weighted @ 4.5kg / m3		input value in m3 (in 'conversion to tonnes' cell)	0	0	0.188	0.005	0.011	o	0	o	0	Base layer (Concrete)	21.49908075	
		Engineering MOT		input value in m3 (in 'conversion to tonnes' cell)	73.6	110.4	0.005	0.005	0.001	0.552	0.552	0.16383	1.2678336			Depth of soil to be calculated @ 50% imported and 50% backfill
		Aggregate, 1500kg/m3 Note: aggregate density will change per m3 based on type and mm to dust of material.		input value in m3 (in 'conversion to tonnes' cell)	0	0	0.005	0.005	0.001	0	o	0	o	Sub - base layer (Aggregate MOT / DTP	2.5540416	
pe 182		Sand, 1600kg/m3		input value in m3 (in 'conversion to tonnes' cell)	70	112	0.005	0.005	0.001	0.56	0.56	0.16621	1.286208			
ath, Ty		Waste material content. 1m3 = 1.43 tonnes.		input value in m3 (in 'conversion to tonnes' cell)	280	400.4		0.005	0.001	0	2.002	0.48809	2.4900876	Executions & Rockfill Javor		
Footp		Soil assumed 5% cement content. 1m3 = 1.9 tonnes of clay soil.		input value in m3 (in 'conversion to tonnes' cell)	73.6	139.84		0.005	0.001	o	0.6992	0.17046	0.86966496	Excavations & Backnin layer	3.33573230	
		Cable Ducts PVC weighted @ 200mm dia 4.44kg / m	0	input value in meters (in 'conversion to tonnes' cell)	0	0	3.23	0.005	0.172	0	0	0	0			
		Cable Ducts PVC weighted @ 150mm dia 3.3kg / m	1	input value in meters (in 'conversion to tonnes' cell)	876	2.8908	3.23	0.005	0.172	9.337284	0.014454	0.4984	9.850137937	Cable Ducts	9.850137937	
		Cable Ducts PVC weighted @ 100mm dia 2.16kg / m	0	input value in meters (in 'conversion to tonnes' cell)	0	0	3.23	0.005	0.172	0	0	0	0			
		Cable 33kV (New) : weighted @ 3.77kg/m	3	input value in meters (in 'conversion to tonnes' cell)	876	9.90756	12.79	0.16	0.13	126.71769	1.5852096	1.28481	129.5877144	Cables	129 5877144	Until manufacturers ECF values are available the ECF value for New Aluminium is used for Power Cables.
		Cable 6.6 / 11kV (New) : weighted @ 1.7kg/m	0	input value in meters (in 'conversion to tonnes' cell)	0	0	3.81	0.032	0.039	o	0	0	o	Cables	123.3077144	
														A1-5w t(CO2e)	174.715794	

1001 Bit 1 1 - 00361 0 - 0006 - 000	

Project Photographs / Drawings

		Cable Type & Excavation	Cable/Duct Number	Units values to input in	Conversion to	Quantity	tity ECF kg(CO2e)		(2e/kg)		Embodied Carbon t(CO2e)				Notes / Comments	
				conversion to tonnes cell	tonnes	(U)	A1-3	A4	A5w	A1-3	A4	A5w	A1-5w		A1-5w	1
		Asphalt, 8% (Bitumen) binder content (by mass) weighted @ 2322kg / m3		input value in m3 (in 'conversion to tonnes' cell)	39.76	92.32272	0.086	0.005	0.006	7.9397539	0.4616136	0.53335	8.934715873	Binder/ Surface Course layer (Tarmac)	8.934715873	
		Ready mix concrete 32/40. 2350kg / m3		input value in m3 (in 'conversion to tonnes' cell)	71.57	168.1895	0.132	0.005	0.008	22.201014	0.8409475	1.38168	24.42363824	Base laver (Concrete)	24.42363824	
		Ready Mix Expanding Foam Concrete weighted @ 4.5kg / m3		input value in m3 (in 'conversion to tonnes' cell)	0	0	0.188	0.005	0.011	0	0	0	0			
		Engineering MOT		input value in m3 (in 'conversion to tonnes' cell)	83.5	125.25	0.005	0.005	0.001	0.62625	0.62625	0.18587	1.438371	Sub - base layer (Aggregate / MOT / DTP)	2.8991358	Depth of soil to be calculated @ 50% imported and 50% backfill
Type 3 & 4	Itage	Aggregate, 1500kg/m3 Note: aggregate density will change per m3 based on type and mm to dust of material.		input value in m3 (in 'conversion to tonnes' cell)	0	o	0.005	0.005	0.001	o	0	o	0			
		Sand, 1600kg/m3		input value in m3 (in 'conversion to tonnes' cell)	79.5	127.2	0.005	0.005	0.001	0.636	0.636	0.18876	1.4607648			
	High Vo	Waste material content. 1m3 = 1.43 tonnes.		input value in m3 (in 'conversion to tonnes' cell)	318	454.74		0.005	0.001	0	2.2737	0.55433	2.82802806	Excavations & Backfill laver	ar 3.81467241	
	Low &	Soil assumed 5% cement content. 1m3 = 1.9 tonnes of clay soil.		input value in m3 (in 'conversion to tonnes' cell)	83.5	158.65		0.005	0.001	0	0.79325	0.19339	0.98664435	,		
		Cable Ducts PVC weighted @ 200mm dia 4.44kg / m	0	input value in meters (in 'conversion to tonnes' cell)	0	0	3.23	0.005	0.172	0	0	0	0			
		Cable Ducts PVC weighted @ 150mm dia 3.3kg / m	1	input value in meters (in 'conversion to tonnes' cell)	994	3.2802	3.23	0.005	0.172	10.595046	0.016401	0.56554	11.176983	Cable Ducts	11.176983	
		Cable Ducts PVC weighted @ 100mm dia 2.16kg / m	0	input value in meters (in 'conversion to tonnes' cell)	0	0	3.23	0.005	0.172	0	0	0	0			
		Cable 33kV (New) : weighted @ 3.77kg/m	3	input value in meters (in 'conversion to tonnes' cell)	994	11.24214	12.79	0.16	0.13	143.78697	1.7987424	1.45788	147.0435937	Cables	Cables 147 0435037	Until manufacturers ECF values are available the ECF value for New Aluminiur is used for Power Cables.
		Cable 6.6 / 11kV (New) : weighted @ 1.7kg/m	0	input value in meters (in 'conversion to tonnes' cell)	0	0	3.81	0.032	0.039	0	0	0	0			
														A1-5w t(CO2e)	198.292739	

Important note: All materials calculated in above sheet, includes only imported materials

		A1-3	Caculation are based on Embodied Carbon Factors (ECF) to Extract kg(CO2e/kg) = Embodied Carbon t(CO2e). Sourced IstructE	e the material Calculated as: To	nnes x ECF]							
к	ey:		Calculation based on kg of CO2e produced by Distance travelled in ka Carbon t(CO2e). Distances referenced from IStructE: Locally source 320km = 0.32kg(COe) / European sourced within 1500km = 0.16kg	m, ECF based o d within 50km (CO2e): Source	on: Tonnes x ECF kg(CO2e/kg) = 0.005kg(CO2e) / Nationally S ed IstructE) = Embodied Sourced within	Calculating						
		A5w	Calculation based on the Waste Factor (WF) of Materials. So brick ha WFx(Material ECF x Distance Travelled x Distance travelled forwast disposal (C3-4) = ASw / Example, assumed waste of concrete is : 0.0	or of 20%, Steel 1% etc: Mate en to lanfill (C2) x C02 used fo 44 x C2 x C3-4) = A5w : Source	When adding in cable lengths in meters, the calculation must include cable numbers for the table to calulate the embodied carbon factor								
			Typical assumed costat stage A1-5 of build is 50% so: 700kg(CO2e) 100,000)= Ans t(CO2e): Soruced IstructE	per £100,000 s	ao: 0.7 x (cost of build +	Key:		Designer to fill in all cells highlighted in light grey Reference no					Calculations & Embodied Carbon factors for materials
No	te:		Please fill in all relavent cells highlighted in GREY - Profile Depths for Type 1&2: top layer = 100mm	Tarmac Concrete			The 'Embod low- high co format work	ied Carbon t(CO2 ntributing material s for each materia	e)' cells are using a tr s. Below this cell in a l and what they indica		from the Brisa (ICE) & IstructE		
			Tayer = 180mm MOT = 210mm Backfill = 210mm Sand layer = 200mm (+/-300mm) Marcial Marcin = Estimate 20% of total Executed material				Low		Medium		High	Ref for material Emobdied Carbon Factors:	A BSRIA guide: Hammond.G etal., 'Embodied Carbon'., The inventory of Cabon and Energy., (ICE).
			Profile Depths for Type 3&4: layer = 100mm Cd	Tarmac top oncrete layer =			0	12.5	25	37.5	50		Embodied Carbon - The Inventory of Carbon and Energy (ICE) (greenbuildingencyclopaedia.uk)
			" Sand layer = 200mm (+/- 300mm) Material Waste = Estimate 80% of total Excavated material									Ref for calculating Embodied Carbon A1- 5& Cell colour formatting	The Institution of Structural Engineers 'How to calculate embodied carbon'.
													A brief guide to calculating embodied carbon (istructe.org)

