	Designer Embodied Carbon (EC) Calculation - Civil & Electrical														
	Build Table Most Contributing Materials 1%>. Embodied Carbon A1-5														
roject Name:	ne: Parkside														
roject Scope:	25kV Cable Diversion to Network Rail Feeder Station due	to redvelopment of ex Colliery Site. Route Length 68)m.												
Project E	mbodied Carbon Breakdown and Totals t(Co2e):		Calculation Date:	18/09/2024											
Total A1-5w	138.76	Note: Total A1-5w t(CO2e): Type 1&2 + Type 3&4 = Ans	Project Code:	50019804											
A5a	1.42		Project Completed in Financial Year:	FY24											
Total A1-5 t(CO2e)) 140.18	Note: Total A1-5t(CO2e): Total A1-5w + A5a = Ans	Estimated Cost of Civil Build(£): (To Estimate A5a)	£202,596.00											
	Postway		H Start (m)		CH End (m)	PRIVATE ROAD Imported	Footpath Imported	Road Type	Road Type Roa	d Type Verge / Soft	Total	CROSS	IISON		

Roadway	CH Start (m)	CH End (m)		PRIVATE ROAD Imported Material (m)	Footpath Imported Material (m)	Road Type 1	Road Type 2	Road Type 4	Verge / Soft Landscape	Total	CROSS SECTION	USRN	COMMENTS
Woodland Area (Parkside Colliery)	0	288							288	288	A-A	N/A	JB - 3/4 - (CH-117m) JB 4/5 (CH - 286m)
Newton Park Drive	288	320						32		32		37501363	
Network Rail (Private Road)	320	680		360						360	1		1
											B-B	N//A	J8-5/6-(CH-325m)
												N/A	JB - 6A - (CH- 680m)
			Tota	360				32	288	680			
											1		

							Ro	oad & C	Cable Ca	Iculations Ta	ible					
		Cable Type & Excavation	Units values to input in	Conversion to	Quantity	ECF kg(CO2e/kg)			Embodied	Carbon t(CO	2e)		Total EC t(CO2e)	Notes / Comments		
				conversion to tonnes cell	tonnes	(U)	A1-3	A4	A5w	A1-3	A4	A5w	A1-5w		A1-5w	
		Asphalt, 8% (Bitumen) binder content (by mass) weighted @ 2322kg / m3		input value in m3 (in 'conversion to tonnes' cell)	38.1	88.4682	0.086	0.005	5 0.006	7.6082652	0.442341	0.51108	8.561686991	Binder/ Suface Course layer (Tarmac)	8.561686991	
		Ready mix concrete 32/40. 2350kg / m3		input value in m3 (in 'conversion to tonnes' cell)	69	162.15	0.132	0.005	5 0.008	21.4038	0.81075	1.33206	23.54661225	Pace Javer (Constate)	22 54504225	
		Ready Mix Expanding Foam Concrete weighted @ 4.5kg / m3		input value in m3 (in 'conversion to tonnes' cell)	0	0	0.188	0.005	5 0.011	0	o	o	o	Base layer (Concrete)	23.54001225	
		Engineering MOT		input value in m3 (in 'conversion to tonnes' cell)	80.7	121.05	0.005	0.005	5 0.001	0.60525	0.60525	0.17964	1.3901382			
4		Aggregate, 1500kg/m3 Note: aggregate density will change per m3 based on type and mm to dust of material.		input value in m3 (in 'conversion to tonnes' cell)	0	0	0.005	0.005	5 0.001	0	0	0	0	Sub - base layer (Aggregate / MOT / DTP)	2.80129212	
oadType	Voltage	Sand, 1600kg/m3		input value in m3 (in 'conversion to tonnes' cell)	76.8	122.88	0.005	0.005	5 0.001	0.6144	0.6144	0.18235	1.41115392			Depth of soil to be calculated @ 50% imported and 50% backfill
toad & R	High	Waste material content. 1m3 = 1.43 tonnes.		input value in m3 (in 'conversion to tonnes' cell)	307.3	439.439		0.005	5 0.001	0	2.197195	0.53568	2.732871141	Executions & Packfill Inver	2 595420411	
Private F	Low 8	Soil assumed 5% cement content. 1m3 = 1.9 tonnes of clay soil.		input value in m3 (in 'conversion to tonnes' cell)	80.7	153.33		0.005	5 0.001	0	0.76665	0.18691	0.95355927	Excavations a Backhin layer	3.000430411	
		Cable Ducts PVC weighted @ 200mm dia 4.44kg / m	0	input value in meters (in 'conversion to tonnes' cell)	0	0	3.23	0.005	0.172	0	o	0	0			
		Cable Ducts PVC weighted @ 150mm dia 3.3kg / m	4	input value in meters (in 'conversion to tonnes' cell)	392	5.1744	3.23	0.005	0.172	16.713312	0.025872	0.89211	17.63129713	Cable Ducts	23.40153983	
		Cable Ducts PVC weighted @ 100mm dia 2.16kg / m	2	input value in meters (in 'conversion to tonnes' cell)	392	1.69344	3.23	0.005	0.172	5.4698112	0.0084672	0.29196	5.770242697	Cables 31 7626578		
		Cable 33kV (New) : weighted @ 5.22kg/m	4	input value in meters (in 'conversion to tonnes' cell)	392	8.18496	3.81	0.032	0.039	31.184698	0.26191872	0.31594	31.76255578			Until manufacturers ECF values are available the ECF value for New Copper is used for Power Cables. 33kV Cable Info used as not available for
		Cable 6.6 / 11kV (New) : weighted @ 1.7kg/m	0	input value in meters (in 'conversion to tonnes' cell)	0	0	3.81	0.032	0.039	0	0	0	o	Cables	01.0230378	25kV.
· · ·							-							A1-5w t(CO2e)	93.76011737	

							Ro	oad & C	Cable Ca	Iculations T	able					
Cable Type & Excavation			Cable/Duct Number	Units values to input in	Conversion to	Quantity	y ECF kg(CO2e/kg)			Embodied (Carbon t(CO	2e)		Total EC t(CO2e)	Notes / Comments	
				conversion to tonnes cell	tonnes	U	A1-3 A4 A5w		A1-3	A4	A5w	A1-5w		A1-5w		
		Asphalt, 8% (Bitumen) binder content (by mass) weighted @ 2322kg / m3		input value in m3 (in 'conversion to tonnes' cell)	0	0	0.086	0.005	5 0.006	0	0	0	0	Binder/ Suface Course layer (Tarmac)	0	
		Ready mix concrete 32/40. 2350kg / m3		input value in m3 (in 'conversion to tonnes' cell)	0	0	0.132	0.005	5 0.008	0	0	0	0	Base laver (Concrete)	0	
		Ready Mix Expanding Foam Concrete weighted @ 4.5kg / m3		input value in m3 (in 'conversion to tonnes' cell)	0	0	0.188	0.005	5 0.011	0	0	0	0		0	
		Engineering MOT		input value in m3 (in 'conversion to tonnes' cell)	0	0	0.005	0.005	5 0.001	0	0	0	0			
	High Voltage	Aggregate, 1500kg/m3 Note: aggregate density will change per m3 based on type and mm to dust of material.		input value in m3 (in 'conversion to tonnes' cell)	115.2	172.8	0.005	0.005	5 0.001	0.864	0.864	0.25644	1.9844352	Sub - base layer (Aggregate / MOT / DTP)	2.4070464	
scape		Sand, 1600kg/m3		input value in m3 (in 'conversion to tonnes' cell)	23	36.8	0.005	0.005	5 0.001	0.184	0.184	0.05461	0.4226112			Depth of soil to be calculated @ 50% imported and 50% backfill
oft Lands		Waste material content. 1m3 = 1.43 tonnes.		input value in m3 (in 'conversion to tonnes' cell)	79.2	113.256		0.005	5 0.001	O	0.56628	0.13806	0.704339064	Excavations & Backfill Javer	2.056100904	
Verge / 3	Low &	Soil assumed 5% cement content. 1m3 = 1.9 tonnes of clay soil.		input value in m3 (in 'conversion to tonnes' cell)	114.4	217.36		0.005	5 0.001	0	1.0868	0.26496	1.35176184			
		Cable Ducts PVC weighted @ 200mm dia 4.44kg / m	0	input value in meters (in 'conversion to tonnes' cell)	0	0	3.23	0.005	5 0.172	o	o	0	0			
		Cable Ducts PVC weighted @ 150mm dia 3.3kg / m	4	input value in meters (in 'conversion to tonnes' cell)	288	3.8016	3.23	0.005	5 0.172	12.279168	0.019008	0.65543	12.95360605	Cable Ducts	17.19296804	
		Cable Ducts PVC weighted @ 100mm dia 2.16kg / m	2	input value in meters (in 'conversion to tonnes' cell)	288	1.24416	3.23	0.005	5 0.172	4.0186368	0.0062208	0.2145	4.239361981			
		Cable 33kV (New) : weighted @ 3.66kg/m	4	input value in meters (in 'conversion to tonnes' cell)	288	6.015744	3.81	0.032	2 0.039	22.919985	0.192503808	0.23221	23.34469617	Cables	23,34469617	Until manufacturers ECF values are available the ECF value for New Copper is used for Power Cables. 33kV Cable Info used as not available for
		Cable 6.6 / 11kV (New) : weighted @ 1.7kg/m	0	input value in meters (in 'conversion to tonnes' cell)	0	0	3.81	0.032	2 0.039	0	0	0	0	Gubes		25kV.
														A1-5w t(CO2e)	45.00081151	

tant note: All materials calculated in above sheet, includes only imported materials

_						-						
			Caculation are based on Embodied Carbon Factors (ECF) to Extract & Manufacture t kg(CO2e/kg) = Embodied Carbon t(CO2e). Sourced IstructE	the material Calculated as: Ton	ines x ECF							
ĸ	ov-		Calculation based on kg of CO2e produced by Distance travelled in km, ECF based on: Carbon t(CO2e). Distances referenced from IStructE: Locally sourced within 50km = 320km = 0.32kg(CO2) / European sourced within 1500km = 0.16kg(CO2e): Sourced	Tonnes x ECF kg(CO2e/kg) = 0.005kg(CO2e) / Nationally So I IstructE	= Embodied ourced within	Calculating	for Cable & Duc	ts note:				
	а у .	A5w	Calculation based on the Waste Factor (WF) of Materials. So brick has a waste factor WFx(Material ECF x Distance Travelled x Distance travelled forwaste material taker disposal (C3-4) = ASw / Example, assumed waste of concrete is : 0.053 x (A1-3 x X A4	r of 20%, Steel 1% etc: Mate n to lanfill (C2) × C02 used for x C2 x C3-4) = A5w : Source	erial r processing d IStructE	When addi calulate the	ng in cable length embodied carbo	is in meters, the calcu on factor	lation must include of	able num	bers for the table to	
			Typical assumed costat stage A1-5 of build is 50% so: 700kg(CO2e) per £100,000 so 100,000) = Ans t(CO2e): Soruced IstructE	0.7 x (cost of build +	Key:		Designer to fill in	n all cells highlighte	d in light grey		Reference note:	Calculations & Embodied Carbon factors
No	te:		Please fill in all relavent cells highlighted in GREY - Profile Depths for Type 182: Tarmac top layer = 100mm Concrete layer =			The 'Emboo high contrib works for ea	lied Carbon t(CO2 uting materials. Be ch material and w	e)' cells are using a tra slow this cell in an exa hat they indicate.	affic light system to in mple of how the colo	dicate, low Ir format		for materials used in the tableare sourced from the Brisa (ICE) & IstructE
_			180mm MOT = 210mm Backill = 210mm Sand			Low		Medium		High	Ref for material Emobdied Carbon Factors:	A BSRIA guide: Hammond.G etal., 'Embodied Carbon'., The inventory of Cabon and Energy., (ICE).
			layer = 200mm (+/-300mm) Material Waste = Estimate 80% of total Excavated material Profile Depths for Type 3&4: Tarmac top layer = 100mm Concrete layer = 50mm			0	12.5	25	37.5	50		Embodied Carbon - The Inventory of Carbon and Energy (ICE) (greenbuildingencyclopaedia.uk)
			MOT = 275mm Backill = 275mm Sand layer = 200mm (+/- 300mm) Material Waste = Estimate 80% of total Excavated material								Ref for calculating	The Institution of Structural Engineers 'How to calculate embodied carbon'.
											5& Cell colour formatting:	Abrief guide to calculating embodied carbon (istructe.org)

