Designer Embodied Carbon (EC) Calculation - Civil & Electrical Build Table Most Contributing Materials 1%>. Embodied Carbon A1-5

New Mills 33kV Switchgear Replacement.

33kV Switchgear Replacement using Siemens NX+. Unused existing room converted to a switchroom.

Project Embodied Carbon Breakdown and Totals t(Co2e):		
Total A1-5w	53.70	
A5a	0.17	
Total A1-5 t(CO2e)	53.87	Note: Total A1-5t(CO2e): Tota A1-5w + A5a = Ans

Calculation Date:	18/09/2024
Project Code:	80017608
Project Completed in Financial Year:	FY24
Estimated Cost of Civil Build(£): (To Estimate A5a)	£24,030.00

Structural timber: in Tonnes, (To Calculate Sequstration Value)	0
Sequestration Value t(CO2e):	0

				Design Values										
	Embodied Carbon t(CO2e)				ECF kg(CO2e/kg) Embodied Carbon t(CO2e)				(CO2e)		Total EC t(CO2e)			
		Units values to input in	Conversion to											Notes/ Comments
Stage of works	Material	conversion to tonnes cell	Tonnes	Quantity(t)	A1-3	A4	A5w	A1-3	A4	A5w	A1-5w		A1-5w	
Foundation Excavation & Backfill	Soil assumed 5% cement content. 1m3 = 1.9 tonnes of clay soil. Ref:	input value in m3 (in 'conversion to tonnes' cell)	1.4	3.2508	0.061	0.005	0.004452	0.1983	0.0163	0.0145	0.22902536	Foundation Excavation & Backfill	0.229025362	
	Asphalt, 8% (Bitumen) binder content (by mass) weight @ 2322kg / m3	input value in m3 (in 'conversion to tonnes' cell)	0	0	0.086	0.005	0.005777	0	0	0	0		0	
Foundation	PVC Pipes (Waste water) weight @ 0.72kg / m	input value in meters (in 'conversion to tonnes' cell)	0	0	3.23	0.005	0.172409	0	0	0	0	Foundation	0	
T GUITGUIGH	Concrete Kerb 26.74 linear meters per m3		0	0	0.188	0.005	0.00211	0	0	0	0	Poulidation	0	
	Limestone Aggregate, 2650kg/m3	input value in m3 (in 'conversion to tonnes' cell)	1.9	5.035	0.005	0.005	0.001484	0.0252	0.0252	0.0075	0.05782194		0.05782194	
	Ready mix concrete 32/40. 2350kg / m3		0	0	0.132	0.005	0.008215	0	0	0	0		0	
Reinforced Concrete	Rebar (New) weight @ H10 = 0.62kg / m	input value in kg (in 'conversion to tonnes' cell)	0	0	2.77	0.032	0.14946	0	0	0	0	Reinforced Concrete	0	
Reinforced Concrete	Rebar (New) weight @ H12 = 0.89kg / m	input value in kg (in 'conversion to tonnes' cell)	0	0	2.77	0.032	0.14946	0	0	0	0	Reinforced Concrete	0	
	Rebar (New) weight @ H20 = 2.47kg / m	input value in kg (in 'conversion to tonnes' cell)	0	0	2.77	0.032	0.14946	0	0	0	0		0	
	Stainless Steel Windposts Grade 304 weight @ 37.5kg / m	'conversion to tonnes' cell)	0	0	6.15	0.032	0.062	0	0	0	0		0	
Steelwork	Steel General (New) weight @ 7900kg / m3 (contractor weights for materials on steel is a must)	input value in kg (in 'conversion to tonnes' cell)	1520	1.52	2.89	0.032	0.0294	4.3928	0.0486	0.0447	4.486128	Steelwork	4.486128	
	Mild Steel Fencing weight @ 25kg per linear meter	input value in meters (in 'conversion to tonnes' cell)	10	0.25	1.53	0.005	0.01553	0.3825	0.0013	0.0039	0.3876325		0.3876325	
	Clay Brick (2000kg / m3)	input value in kg (in 'conversion to tonnes' cell)	0	0	0.24	0.005	0.06575	0	0	0	0	Superstructure	0	
Superstructure	Louvres RSH5700 edition / weight @ 25kg/m2 (Assumed alluminium frame)	input value in kg (in 'conversion to tonnes' cell)	0	0	12.79	0.032	0.1284	0	0	0	0		0	
Superstructure	Mineral wool insulation, Rockwool RW3, weight at 60kg/m3	input value in kg (in 'conversion to tonnes' cell)	0	0	1.28	0.005	0.069059	0	0	0	0		0	
	Autoclaved Aerated Concrete Block 600kg / m3	input value in kg (in 'conversion to tonnes' cell)	0	0	0.375	0.005	0.0995	0	0	0	0		0	
	Timber truss weight @ 3kg / m	input value in kg (in 'conversion to tonnes' cell)	0	0	0.42	0.005	0.12847	0	0	0	0		0	
	Concrete roof tiles weight @ 3kg / m2	input value in kg (in 'conversion to tonnes' cell)	0	0	0.1	0.005	0.00123	0	0	0	0		0	
Roof	Concrete Roof Columns weight @ 355kg / m	input value in meters (in 'conversion to tonnes' cell)	0	0	0.188	0.005	0.00211	0	0	0	0	Roof	0	
	PVC Pipes (weight @ 0.72kg / m)	input value in meters (in 'conversion to tonnes' cell)	0	0	3.23	0.005	0.172409	0	0	0	0		0	
Cable Excavation & Backfill	Soil assumed 5% cement content. 1m3 = 1.9 tonnes of clay soil. Ref. (https://coolconversion.com/volume- mass-construction/~1-cubic- meter~of~clay-soil~to~tonne)	input value in m3 (in 'conversion to tonnes' cell')	462	87.78	0.061	0.005	0.004452	5.3546	0.4389	0.3908	6.18427656	Excavation & Backfill	6.18427656	Assumed removal of 10% of excavation
	Cable Ducts PVC-3 Phases -ave weight 3.3kg / m	input value in meters (in 'conversion to tonnes' cell)	385	1.2705	3.23	0.005	0.172409	4.1037	0.0064	0.219	4.32911313		4.329113135	Until manufacturers ECF values are available the ECF value for New Copper is used for Power Cables. Multicore cables
Cables	Single Core Cable 33kV - 3 Phases : ave weight @ 15.6kg/m	input value in meters (in 'conversion to tonnes' cell)	385	6.006	3.81	0.16	0.03988	22.883	0.961	0.2395	24.0833393		24.08333928	are assummed to be 80% copper, 20% PVC by weight.
Gabica	Single Core Cable 6.6 / 11kV - 3 Phases : av weight @ 13.6kg/m	input value in meters (in 'conversion to tonnes' cell)	0	0	3.81	0.032	0.0386	0	0	0	0		0	
	Muliticore Cable : av weight @ 1.5kg/m	input value in meters (in 'conversion to tonnes' cell)	430	0.645	3.7	0.032	0.0375	2.3865	0.0206	0.0242	2.4313275		2.4313275	
Transformers	Transformer 33kV	input value in Tonnes (in 'conversion to tonnes' cell)	0	0		0.16	0.00178	0	0	0	0		0	
	Transformer 132kV	input value in Tonnes (in 'conversion to tonnes' cell)	0	0		0.16	0.00178	0	0	0	0	Transformers	0	
Switchgear	Transformer EAT	input value in Tonnes (in 'conversion to tonnes' cell') input value in Tonnes (in	0	0	25:00	0.16	0.00178	0	0	0	0		0	ECF based on manufacturer's values for
	33kV Switchgear: ave weight 730kg	'conversion to tonnes' cell)	7	2.415	3.5429	0.5173	0.0407818	8.556		0.0985	9.90381473		9.903814728	similar switchgear.
	Protection Panels: ave weight 260kg	'conversion to tonnes' cell)	2	0.52	3.03	0.032	0.0308	1.5756	0.0166	0.016	1.608256		1.608256	
		'conversion to tonnes' cell) input value in Tonnes (in	0	0		0.16	0.00178	0	0	0	0	Switchgear	0	
		'conversion to tonnes' cell) input value in Tonnes (in	0	0		0.16	0.00178	0	0	0	0		0	
		'conversion to tonnes' cell) Input value in Tonnes (in	0	0		0.16	0.00178	0	0	0	0		0	
		'conversion to tonnes' cell)		,		3.10	0.50170	_					l "	l .

Calculation Notes:					
Weight of structural Timber (Excluding temp works):		tonnes			
Weight of Temporary Timber (formworks, Assumed reuse):		tonnes			
Foundation -Trench Excavations	At Length[1.3] m x Width[1.2] m x Depth[0.9] m = [1.4] m3				
Cables - Trench Excavtions	At Length(385] m x Width[1.2] m x Depth[1] m = [462] m3				
Power Cable circuit lengths	[55] meter lengths x No. of cables [7]				

0.10	0.00178	0 0			ľ		
	Designer to fill in all	l cells highlighted	I in light grey		Reference note:	Calculations & Embodied Carbon factors for	
					materials used in the tableare sourced from the Brisa (ICE) & IstructE		
Low		Medium		High	Ref for material Emobdied Carbon Factors:	A BSRIA guide: Hammond.G etal., 'Embodied Carbon'., The inventory of Cabon and Energy., (ICE).	
0	12.5	25	37.5	50		Embodied Carbon - The Inventory of Carbon and Energy (ICE) Igreenbuildingencyclopaedia.uk)	
structural tin used to calcul	nber values in tonnes ate the amount of car	can be used to ca	culate the sec ughout the bu	questration value, this is	Ref for calculating Embodied Carbon A1-5& Cell colour formatting		
				he tab below.		A brief guide to calculating embodied carbon. (istructe.org)	
T	The Embodie contributing modicate. Low Other notes taltructural times to calculate taltructural example: 20	Designer to fill in all Designer to fill in all the Embodied Carbon (ICCZe) oil contributing materials. Below this or dictate. Low 12.5 The notes table to the let can be contributed in the carbon to the carbon	Designer to fill in all cells highlighted be the Embodied Carbon (ICC2e) cells are using a trailing nontributing materials. Below this cell in an example of edicate. Low Medium 12.5 25 The notes table to the left can be used to help brask contributing materials. Below the cell in an example of example to the contribution of the cells of t	Designer to fill in all cells highlighted in light grey he Embodied Carbon I(COZe) cells are using a staffic light system to northibuting materials. Below this cell in an example of how the colour dictate. Low Medium 12.5 25 37.5 for he notes table to the let can be used to high breakdown and review tructural timber values in nones can be used to accludate the sead to accludate the sead to accludate the amount of carbon storage throughout the but sample: 20 tomes of structural films **.1.5.4.8 kg/COZ®**.	Designer to fill in all cells highlighted in light grey The Emboded Carbon (1002) cells are using a traffic light system to indicate, two-high and carbon (1002) cells are using a traffic light system to indicate, two-high and carbon (1002) cells are using a traffic light system to indicate, two-high and carbon (1002) cells are using a traffic light system to indicate, two-high Medium Medium 12.5 25 37.5 50 The notes table to the list can be used to help breakdown and review calculations. The transcript intoher values in formes can be used to actuation the sequentration value, this is sect to calculate the anaumout of carbon storage throughout the builds (Ife cycle).	Designer to fill in all cells highlighted in light grey The Embodied Carbon (1002e) cells are using a staff light system to indicate, lose-high contributing materials. Below this cell in an example of how the colour format works and what they clicate. Low Medium Med	

A1-3	Caculation are based on Embodied Carbon Factors (ECF) to Extract & Manufacture the material Calculated as: Tonnes x ECF kg(C02e/kg) = Embodied Carbon t(C02e). Sourced IstructE
	Calculation based on kg of CO2e produced by Distance travelled in km, ECF based on: Tonnes x ECF kg(CO2e/kg) = Embodied Carbon t(CO2e). Distances referenced from (StructE: Locally sourced within 50km = 0.005kg(CO2e)/ Nationally Sourced within 320km = 0.2kg(COe)/ European sourced within 150km = 0.16kg(CO2e): Sourced IstructE
A5w	Calculation based on the Waste Factor (WF) of Materials. So brick has a waste factor of 20%, Steel 1% etc Material WFx(Material ECF x Distance Travelled x Distance travelled for browste material ulaten to lanfill (C2) x C02 used for processing disposal (C3-4) = A6w / Example, assumed waste of concete is : 0.053 x (A1-3 x x A4 x C2 x C3-4) = A6w : Sourced (StructE
5a	Typical assumed costat stage A1-5 of build is 50% so: 700kg(CO2e) per £100,000 so: 0.7 x (cost of build +100,000) = Ans t(CO2e): Soruced IstructE
	A4 ASw

Project Photographs / Drawings

