Climate change adaption report 15 June 2011 Electricity North West 304 Bridgewater Place, Birchwood Park Warrington, Cheshire WA3 6XG Telephone: +44(0) 1925 846999 Fax: +44(0) 1925 846991 Email: enquiries@enwl.co.uk Web: www.enwl.co.uk Secretary of State Defra Nobel House Smith Square London SW1 15 June 2011 Dear Secretary of State # Climate Change Adaptation Report by Electricity North West Limited This letter together with the attached appendices forms Electricity North West's response to the 'Direction to report on adaptation under the Climate Change Act 2008' issued by Defra in March 2010. Through the Energy Networks Association (ENA) we have worked with colleagues from Ofgem, DECC and other electricity network companies to develop a common response to the challenges of climate change. Details of this work are provided in Appendix B to this document – the ENA Engineering Report on Climate Change Adaptation. The report provides an assessment of the current and predicted impact of climate change on electricity networks and our proposals for adapting to climate change. Whilst the ENA report concentrates on issues that are common to all network companies, we have also looked at issues that are specific to Electricity North West. The most significant of these being that the average temperature in our area is typically about 2°C lower than that in the south east of England. As our networks are built to the same national and international standards we expect that we will have more time to respond to any heat related impacts than our colleagues in the south. We have provided details of our internal analysis in Appendix A which is an executive summary in the format defined by Defra. The following section provides a brief synopsis of our findings. # **Electricity North West Summary** At Electricity North West we are aware that climate change will have an impact on the infrastructure that we are responsible for. We are undertaking work to meet current challenges and we are taking part in a number of research projects to quantify the impact in the future. However the impact of climate change will be just one of the drivers for change on our network over the next forty years. The move to the low carbon economy with the introduction of smart grid technology, the connection of new generation and the growth in use of electric vehicles will lead to major changes. This will take place at the same time as we are replacing aging assets. Consequently we expect that much of the work to adapt to climate change will be built into our ongoing business-as-usual procedures. Details of our analysis of climate change issues are given in the appendices to this letter, but the main potential impacts identified for Electricity North West can be summarised as follows: - Flooding we expect that the number of flooding incidents will increase and we are currently taking action to protect vulnerable substations from floods. We have already improved flood defences at 28 substations, with plans in place to upgrade defences at a further 22 substations by 2014. - Increase in temperature as temperatures increase the performance of our equipment will change. Typically we expect this to reduce the capacity of the equipment by less than 0.2% per year. We expect demand on our network to increase by up to 2% a year in the long term, so the climate change adaptation activity will be built into our programme to meet increased load. - **Increased vegetation growth** change in climate is expected to lead to an acceleration in the rate that trees grows, so we will need to modify our inspection and cutting programmes to minimise the interference from trees on our overhead lines. - Resilience to extreme events whilst all electricity networks can be vulnerable to lightning and high winds there is currently no evidence to suggest that the intensity of these events will increase in the future. We will continue to work with industry experts to monitor research in this area. With the exception of flooding we expect that the impacts on our business from climate change will be gradual, largely indistinguishable from other factors, and that we will be able to deal with them with a long term approach. We will continue to work with our colleagues in the industry and other expert bodies to regularly assess our vulnerability to climate change, and we will adopt our policies and procedures accordingly when required. We trust that this submission proves useful to you. Please contact us if you require any further information. Yours faithfully Steve Johnson Chief Executive Officer # Appendix A – Executive Summary # 1 Information on organisation Name of organisation **Electricity North West Limited** Organisation's functions, mission, aims, and objectives affected by the impacts of climate change A summary of your organisational purpose and key strategic priorities which are or will be affected by climate change is important when identifying risks to your organisation. Electricity North West is the electricity Distribution Network Operator (DNO) for the North West of England. We operate under a licence from the regulator, Ofgem, to distribute electricity through our network of 13 127 km of overhead lines, 43 126 km of underground cables and 38 332 transformers to around 2.4 million homes and businesses. Our area incorporates Greater Manchester, the counties of Lancashire and Cumbria and parts of Derbyshire, Cheshire and North Yorkshire. #### **Our Distribution Services Area** As a regulated Distribution Network Operator, Electricity North West is focused on the efficient delivery of key outcomes for our customers and on delivering an economic return to our shareholders. We are a significant contributor to the North West's economy, with a substantial research and development spend and a key role to play in enabling regional economic development. In the period from 2010-2015 we plan to invest over £1.4 billion in the region's infrastructure including £200 million for new connections, £120 million to reinforce the network and £420 million to replace assets at the end of their operational lives. Our primary objective is to ensure that our customers continue to receive a high level of service. On average a customer in our area will lose supply once every two years and that interruption will be less than two hours. This represents a network availability of over 99.99%. In assessing the impact of climate change we have looked at the impact that changes in climate will have on our equipment and its ability to operate effectively in the future. The major potential impacts investigated are: - Increased risk of flooding; - Ability of our equipment to perform efficiently in higher temperatures; - Accelerated tree growth requiring increased vegetation management; and - Resilience of our networks to extreme events. Whilst looking at the impact from climate change we also need to take account of the many other drivers for change on our network over the long term, which include: - The connection of low carbon generation to our network; - The growth in the use of electric vehicles; - The introduction of Smart Grid technology; - The forecast doubling in demand for electricity by 2050; and - The replacement of aging assets. Our business plans for future investment will be driven by all these issues and we will work with our economic regulator, Ofgem, to prioritise our investment plans. # 2 Business preparedness before Direction to report was issued Has your organisation previously assessed the risks from climate change? Have you a baseline assessment of the risks of climate change to your business currently? The requirements of the Direction can build upon any existing risk assessment you have in place. Please include a summary of findings from your previous risk assessment(s) in your report. Electricity North West has worked with other electricity companies and the Met Office to understand the potential impacts of climate change. The results of the project "Impact of Climate Change on the UK Energy Industry" (also known as EP2) were published in 2008. This initiative brought climate science closer to business applications and was the first project sponsored by an entire sector to review the specific impacts of climate change on that industry. Extracts from this study can be found in Appendix B – the ENA Climate Change Adaptation Report. If so, how were these risks and any mitigating action incorporated into the operation of your organisation? It is useful to understand whether, and to what extent climate change risks are already incorporated into your business risk management processes at the strategic level. The project found that with a few exceptions, such as the thermal ratings of equipment and apparatus, there was no evidence to support adjusting network design standards. These findings have not been incorporated into our planning process yet, but they have been further investigated in our work to prepare for Climate Change Adaptation Reporting. # 3 Identifying risks due to the impacts of climate change What evidence, methods, expertise and level of investment have been used when investigating the potential impacts of climate change? What evidence have you assimilated to inform your risk assessment? What has been your approach (quantitative, qualitative, scenario based)? What resource (£ / person / days) have been assigned to this assessment? Briefly summarise your approach – in house staff, professional advisors, research expertise? Electricity North West has worked with the other electricity network companies through our trade association, the Energy Networks Association (ENA), to establish a working group to develop a common response to the challenges of climate change. This working group has been supported by representatives from Ofgem and DECC. Working together to assess the impact of climate change is appropriate because network companies are subject to the same forms of
regulation, the same type of funding regimes and work to the same sets of national and international standards. Consequently the electricity network companies agreed to create an Engineering Report which will form the common core to our responses. Each company will then use this as a reference work in our individual responses. The Engineering Report forms Appendix B of this submission. The working group, made up of industry experts, identified a list of potential risks that climate change could cause and then investigated the potential impact of those risks. A variety of information sources were used, including: - Results of current and previous research projects (undertaken either collaboratively or independently); - Manufacturer specifications for equipment; - National and international standards; and - UKCP09 projections for climate change. The UKCP09 projections for the 2020s, 2050s and 2080s were used to give a long term view, in line with the potential life of our assets, and it was decided to use the 90% probability level for the High Emissions Scenario to understand the range of possible impacts. For each equipment type the potential change in performance was evaluated, and the significant impacts were detailed in the ENA report. Because of the co-operative approach to developing our response the demands on man-power have been shared reducing the potential costs for all involved, but it makes it difficult to assess the resource used. As a group we met on eight occasions over a year, with around a dozen people involved. Whilst the collation of the core document was handled by ENA staff, the majority of the content was developed by company representatives, and reviewed by all companies. In addition to the core document each organisation has developed its own company specific section of the submission. At Electricity North West, one member of staff has been working over the last eighteen months on climate change issues, which have supported Adaptation Reporting. # 4 Assessing risks How does your organisation quantify the impact and likelihood of risks occurring? Provide here a brief summary of the methodological approach to quantification where this has been possible and your categorisation of likelihood and impact. State what criteria you have used to characterise the significance of the risks (high, medium, low, negligible) and how these have been derived. What level of confidence do you have in the analysis? For the purposes of Climate Change Adaptation Reporting we have used a common approach agreed within the working group to look at the impact and likelihood of risks. Risks have been placed in a five-by-five matrix plotting Relative Likelihood against Relative Impact. These have been categorised as follows: #### Relative likelihoods Probability of a climate change effect having an impact under all change scenarios (Very Unlikely, Possible, Probable, Almost Certain) #### **Definitions of relative impacts** | Extreme | In excess of 2.5 million people off supply for a month or more OR | | | | | | | | | |-------------|---|--|--|--|--|--|--|--|--| | | asset de-rating exceeds ability to reinforce network leading to rota disconnections on peak demand. | | | | | | | | | | Significant | In excess of 500 000 and less than 2.5 million people off supply for a week or more | | | | | | | | | | | OR | | | | | | | | | | | asset de-rating requires a significant re-prioritisation of network reinforcement and deferment of new connection activities. | | | | | | | | | | Moderate | In excess of 100 000 and less than 500 000 people off supply for up to a week | | | | | | | | | | | OR | | | | | | | | | | | significant increase in cost of network strengthening. | | | | | | | | | | Minor | In excess of 25 000 and less than 100 000 people off supply for a 24 hour period | | | | | | | | | | | OR | | | | | | | | | | | significant increase in cost of network maintenance requirements. | | | | | | | | | | Limited | Limited impact - can be managed within "business as usual" processes. | | | | | | | | | The combination of Likelihood and Impact is then used to derive a risk measure of Very High, High, Medium and Low, as illustrated in the matrix below. We are confident that the level of analysis is robust over the short to medium term. For the much longer term (post 50 years) there are so many uncertainties associated with the climate change projections, new technology and economic and societal changes, that it would be difficult to ascribe a level of confidence to that analysis. Consequently we intend to review the analysis on a regular basis to assimilate new knowledge as it becomes available. # 5 Uncertainties and assumptions What uncertainties have been identified in evaluating the risks due to climate change? Where are the key uncertainties in the analysis of the impacts of climate change and what impact do these have on the prioritisation of adaptation responses and risks for your organisation. How have these uncertainties been quantified and, in brief, what are the implications for the action plan? The main uncertainties in our adaptation plans relate to the projections of the weather that will be experienced in the remainder of the century. Whilst UKCP09 provides great detail on a number of climate change variables, there is a wide range of potential outcomes, and a number of the weather effects which are important to electricity network operators are not covered in UKCP09. UKCP09 indicates that we will have increased temperatures and a change in the distribution of rainfall across the year. These variables can be used in our analysis of potential flooding, vegetation management and the effects on equipment rating, but there is a wide range of potential outcomes. Network companies are also exposed to the impact of very strong winds and lightning, which are not covered in UKCP09. There is an expectation that there will be more storms, but there is no evidence that they will be more severe than those currently experienced. Proxies are available for the potential occurrence of lightning but these are not available through UKCP09 and require expert interpretation. Together with other electricity network companies we will continue to maintain close contact with the Met Office and other agencies to ensure that the most up to date information is available regarding potential threats, enabling us to plan ahead and develop adaptation schemes if required. ## What assumptions have been made? The key strategic business assumptions and methodological assumptions that underpin your analysis of impacts, action plan and analysis of risks. Well-evidenced and justified assumptions are important to the credibility of and confidence in the risk assessment. The base programme makes the following assumptions until 2100: - Government regulation will continue to operate without major change. - Appropriate financing will be available. - Customers will continue to have similar requirements. - Demand for electricity will continue to grow with consumption doubling by 2050. - Electricity Transmission and Distribution Systems will continue to function in a similar manner to the present day. - Companies will be able to recruit, train and retain the required levels of staff. - Suppliers and contractors will continue to provide services on a similar basis. - Installation, access and maintenance in relation to network cables, overhead lines plant and equipment will remain unchanged. - There will be no major changes to population numbers or distribution across the country. # 6 Addressing current and future risks due to climate change – summary | Business
function | Climate variable
(e.g. increase in
temperature) | Primary impact of climate variable (e.g. health) | Threshold(s)
above which this
will affect your
organisation | Likelihood of
threshold(s) being
exceeded in the
future and
confidence in the
assessment | Potential impacts on organisation and stakeholders | Proposed action to mitigate impact | Timescale over which risks are expected to materialise and action is planned | |---|---|--|--|--|--|--|--| | Transformers,
Switchgear,
Overhead Lines,
Cables | Increased
Temperature | Ratings -Temperature increases will have an impact on equipment ratings which will affect their performance. Initial studies indicate that the impact will be small and will be managed through our asset replacement programme. | Each piece of equipment will have its own individual rating, so thresholds will vary. Initial studies
show that under the high emissions scenario at a 90% probability, ratings will decrease by between 0.1% and 0.2% a year. At the same time we expect demand on our network to be increasing by 1% to 2% annually. We will be reinforcing our network to manage this increase, with the consequence that the ratings challenge will be managed at the same time. | As part of our asset management programme it is planned that equipment will be replaced or reinforced before thresholds are reached. | If ratings are regularly exceeded this will damage the equipment, which will possibly lead to outages for customers. | As part of our asset management programme it is planned that equipment will be replaced or reinforced before thresholds are reached. | Actions will take place on an ongoing basis as part of our business-as-usual process to replace assets, so we do not expect the risk to materialise. | | Business
function | Climate variable
(e.g. increase in
temperature) | Primary impact of climate variable (e.g. health) | Threshold(s)
above which this
will affect your
organisation | Likelihood of
threshold(s) being
exceeded in the
future and
confidence in the
assessment | Potential impacts on organisation and stakeholders | Proposed action to mitigate impact | Timescale over which risks are expected to materialise and action is planned | |----------------------|---|--|---|---|--|--|--| | Substations | Increased Rainfall, sea level rise and extreme events | Flooding - There is a risk that an increase in the number and scale of extreme events may lead to increased occurrences of flooding which could damage substations leading to outages. | In response to the challenges of flooding electricity network companies have developed an Engineering Technical Report known as ETR 138 which provides guidance on the provision of flood protection. In line with ETR 138 we have assessed the flood risk of all substations and we are in the process of upgrading flood defences in a prioritised programme. For grid supply points which typically serve between 40 000 and 500 000 customers our substations will be resilient to a 1:1000 year flood contour. For primary substations, which typically supply between 5 000 and 20 000 customers they will be resilient to a 1:100 year flood contour. | Our current programme of flooding work will be completed in 2014. All those substations at greatest risk from flooding will then be protected to the levels recommended in ETR 138 plus an additional safety margin to provide protection against increased flooding levels due to climate change. We therefore believe that are substations are unlikely to be damaged by flooding. | If a substation site is flooded it may become non-operational leading to a loss of system resilience or a loss of supply to customers. | Electricity North West has embarked on a prioritised investment plan to defend vulnerable sites at a total cost of over £10m. Work has been completed at 28 sites out of a total of 50 requiring improvement. The programme will be completed by 2014. | The risks of flooding are already with us, but the actions to mitigate the risk are currently being put into place | | Business
function | Climate variable
(e.g. increase in
temperature) | Primary impact of climate variable (e.g. health) | Threshold(s)
above which this
will affect your
organisation | Likelihood of
threshold(s) being
exceeded in the
future and
confidence in the
assessment | Potential impacts on organisation and stakeholders | Proposed action to mitigate impact | Timescale over which risks are expected to materialise and action is planned | | | |----------------------|---|--|--|--|---|---|--|--|--| | Overhead Lines | Increased
Temperature | Vegetation Management – as temperatures increase and the growing season for trees lengthens we will need to adopt a more aggressive vegetation management policy to prevent trees interfering with our overhead lines causing outages. | Increased vegetation growth is already affecting network companies, but the increase is gradual. We currently cut on a five year cycle. This cycle will be gradually accelerated in response to change in growth patterns. | The threshold is likely to be exceeded but can be managed through an acceleration of the inspection and cutting cycles. | If the tree cutting programme is not effective there is a greater probability of outages due to trees hitting the overhead lines. | We will work with experts to monitor tree growth and will accelerate our tree cutting programme accordingly. | Risks are expected to increase with immediate effect, but the size of these increases is expected to be small allowing a phased acceleration. | | | | Network resilience | Increased occurrence of extreme events | Resilience – extreme events such as high winds, storms and lightning have the potential to cause interruptions on our network | There is no specific threshold which will trigger an impact on our company. The outcome of any extreme event will vary with location, network topography and the nature of the event. | Current projections suggest that there will be an increase in the number of extreme events, but there is no evidence that these events will be any more severe than the ones that we are already prepared for. | If our network is not resilient to extreme events then it is likely to be damaged resulting in outages for customers. | As part of our business-as-usual procedures we regularly review the levels of resilience. If evidence of an increase in the severity of extreme events becomes available we will use that evidence to review our resilience standards and will adapt our network as required. | Actions will take place on an ongoing basis as part of our business-as-usual process to review resilience. If any evidence arises we will act to update our standards. | | | # 7 Barriers to implementing adaptation programme What are the main barriers to implementing adaptive action? What do you see as the key challenges to implementation of your action plan? How will these be resourced and addressed? Briefly, what additional work is required? Our analysis of the impacts of climate change has presented no major technical barriers to the implementation of adaptive actions. The only potential barrier we foresee could be in the area of regulation and finance. As a regulated utility we are subject to periodic price control reviews. The regulator, Ofgem, reviews our investment plans for the next price review period and decides how much money we can recover from customers. In order to finance climate change adaptation activities we will have to be able to demonstrate to the regulator that those adaptation activities are necessary and economically efficient. If the regulator considers that the adaptation work is inappropriate we will receive no funding so it is unlikely to take place. It is our intention to work with other network companies and the regulator to
agree a common approach to each risk posed by climate change; in much the same way as the work was undertaken to tackle the risk of flooding. If the industry and the regulator agree an approach then the problem of lack of funding is unlikely to arise. Has the process of doing this assessment helped you identify any barriers to adaptation that do not lie under your control? Interdependencies may arise where others' actions are likely to impact on your ability to manage your own climate change risks. Briefly comment on where this is the case. Other than the issues of funding outlined above we foresee no barriers to implementing our climate change plans, other than those facing society as a whole, such as break down of transport links or the impact of a pandemic. # 8 Report and review How will the outcome of the adaptation programme be monitored and evaluated and what is the timetable for this? Adaptation programmes are expected to reduce the residual risk to organisations from climate change. What measures will you put in place to monitor this? Our climate change adaptation programme will form a relatively small part of our overall business-as-usual processes. Consequently we will have no specific measures to monitor the impact of climate change. We will continue to monitor the overall effectiveness of our network using similar measures to those we use today such as health indices, load indices and measures of customer interruptions and minutes lost. How do you propose to monitor the thresholds above which impacts will pose a threat to your organisation (including the likelihood of these thresholds being exceeded and the scale of the potential impact)? It is possible that the current risk appetite within your organisation will change on account of the climate change risks identified. How will this be monitored? Other than the localised impact of flooding, we foresee no threshold above which there will be a 'threat to our organisation'. Each potential impact will present a gradual change and we anticipate being able to cope with all impacts through a long term programme of investment. How will the benefits of the programme be realised and how will this feed into the next risk assessment and options appraisal? Briefly state your plans for the next iteration of your climate change risk assessment. We will continue to work with our colleagues in the industry and climate change experts to regularly update our views on the impact of climate change, and to revise our plans where necessary. How have you incorporated flexibility into your approach? State whether your approach leaves you open to exploring different pathways in future or whether any of the measures have locked the approach into one particular path, with justification Because of the long term nature of the response to climate change we have a very flexible approach. We will regularly update our views on climate change impact, and can accelerate or decelerate our planned response, in consultation with the regulator. # 9 Recognising opportunities What opportunities due to the effects of climate change and which the organisation can exploit have been identified? The risk assessment is also expected to generate opportunities for organisations, have these been captured? What are the key ones and the expected net benefits? Climate change is expected to lead to a milder winter climate, although the distribution of weather events across the winter period is more difficult to forecast. If climate change results in fewer and less severe icing events we may be able to reduce the design standard for ice loading with subsequent cost savings. # 10 Further comments / information Do you have any further information or comments which would inform Defra (e.g. feedback on the process, the statutory guidance, evidence availability, issues when implementing adaptation programmes, challenges, etc)? Adaptation to climate change will form an important part of Electricity North West's business activity over the remainder of this century, but it will be a small part of a large programme which will need to incorporate moves to a low carbon economy, replacement of aging assets and continuing growth in electricity demand. **Engineering Report 1** Issue 1 2011 Electricity Networks Climate Change Adaptation Report # © 2011 Energy Networks Association All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written consent of the Energy Networks Association. Specific enquiries concerning this document should be addressed to: Operations Directorate Energy Networks Association 6th Floor, Dean Bradley House 52 Horsferry Rd London SW1P 2AF This document has been prepared for use by members of the Energy Networks Association to take account of the conditions which apply to them. Advice should be taken from an appropriately qualified engineer on the suitability of this document for any other purpose. ## Index | 1. | Exec | cutive S | ummary | 5 | |----|------|-----------|---|----| | 2. | Fore | word | | 10 | | 3. | Fund | ctions in | npacted by climate change | 11 | | | 3.1. | Electri | city Network Companies' organisation's functions, mission, aims | , | | | | and ob | ojectives | 11 | | | | 3.1.1. | Overview | 11 | | | | 3.1.2. | Description of Networks | 12 | | | | 3.1.3. | Levels of service | 13 | | | | 3.1.4. | International and National Standards | 14 | | | | 3.1.5. | Emergency Planning | 16 | | | 3.2. | Effect | of current and possible future impacts of climate change | 17 | | | | 3.2.1. | Current Position | 17 | | | | 3.2.2. | UK Climate Projections | 17 | | | | 3.2.3. | Impact on electricity networks | 18 | | | | 3.2.4. | Temperature effects | 19 | | | | 3.2.5. | Precipitation | 19 | | | | 3.2.6. | Sea Level Rise and Storm Surge | 20 | | | | 3.2.7. | Other Climate Threats | 20 | | | 3.3. | Asses | sment of climate thresholds above which climate change and | | | | | weath | er events will pose a threat | 21 | | | | 3.3.1. | Temperature effects | 21 | | | 3.4. | Potent | tial impacts of climate change on key stakeholders | 21 | | 4. | Appı | | sed to assess risk | | | | 4.1. | Evider | nce, methods and expertise used to evaluate future climate impac | ts | | | | includ | ing sources and references | 22 | | | | 4.1.1. | Work on flooding resilience | 23 | | | | 4.1.2. | Work with the Met Office | 23 | | | | 4.1.3. | Other activities related to Climate Change Risk Assessment | 27 | | | | 4.1.4. | _ | | | | 4.2. | Estima | ation of the impact and likelihood of risks occurring at various po | | | | | | future | | | | 4.3. | | ation of the costs and benefits of proposed adaptation options | | | | | 4.3.1. | Introduction | | | 5. | Sum | mary of | risks which affect functions, mission, aims, and objectives | 29 | | | 5.1. | - | ead Lines (Risks AR1, AR2 and AR3) | | | | | 5.1.1. | • | | | | | 5.1.2. | Climate change and overhead line ratings | | | | | 5.1.3. | Climate change and structural strength of overhead lines | | | | | 5.1.4. | Limitations on available information | | | | 5.2. | Vegeta | ation Growth and Climate Change (Risk AR3) | | | | | 5.2.1. | Fundamentals | | | | | 5.2.2. | Changes in Growing Season | | | | | 5.2.3. | Vegetation Growth – Changes in Habitat Suitability | | | | | 5.2.4. | Assessing the Impact of Climate Change | | | | | 5.2.5. | Vegetation Growth Research Currently Underway | | | | 53 | | ground Cables (Risks AR4 and AR5) | | | | | 5.3.1. | Introduction | . 43 | |-----|-------|-----------|--|------| | | | 5.3.2. | Underground electricity cables background information | . 43 | | | | 5.3.3. | Climate Change | | | | | 5.3.4. | Impact of climate change on cable ratings | . 45 | | | 5.4. | Substat | tion earthing (Risk AR6) | . 48 | | | | 5.4.1. | Purpose | . 48 | | | | 5.4.2. | Description of an Earthing System | . 49 | | | | 5.4.3. | Impact of Climate Change on Earth Resistance | . 50 | | | | 5.4.4. | Risk & Mitigation | | | | 5.5. | Transfo | ormers (Risks AR7 and AR8) | . 53 | | | 5.6. | Substat | tions (Risks AR9, AR10, AR11, AR12 and AR13) | . 56 | | | | 5.6.1. | Introduction | . 56 | | | | 5.6.2. | Typical equipment contained within a substation | . 58 | | | 5.7. | Lightni | ng resilience (Risk AR14) | . 63 | | | 5.8. | Other in | mpacts | . 64 | | | 5.9. | Strateg | ic risks from climate change on a likelihood/consequence matrix. | . 66 | | | 5.10. | Identifie | ed short and long term impacts of climate change | . 67 | | | 5.11. | | iority climate related risks and why (level of impact to business, | | | | | likeliho | od, costs and timescales) | . 67 | | | 5.12. | Opport | unities due to the effects of climate change which can be exploite | d | | | | | | | | 6. | Actio | ns prop | osed to address risks | . 67 | | | 6.1. | - | tion actions for the top priority risks with timescales | | | | 6.2. | | entation of adaptation actions | | | | 6.3. | Industr | y specifications and guidance | . 69 | | | 6.4. | Cost es | stimate for adaptation measures and benefits anticipated | . 70 | | | 6.5. | Estimat | te of level of risk reduction and timescales | . 71 | | 7. | | _ | he management of climate change risks in Transmission and | | | | | | Network Operators | | | | | | Grids | | | 8. | Unce | rtainties | and assumptions | . 72 | | | 8.1. | | ncertainties in the evidence, approach and method used in the | | | | | • | tion programme and in the operation of the companies | | | | 8.2. | - | ptions made when devising the programme for adaptation | | | 9. | Barri | | daptation and interdependencies | | | | 9.1. | | s to implementing companies' adaptation programmes | | | | 9.2. | | sing the barriers identified | | | | 9.3. | - | pendencies including the stakeholders | | | 10. | | _ |
nd evaluation | | | | | | ring the adaptation programme | | | | 10.2. | | ring the thresholds above which climate change impacts will pose | | | | | | the company and incorporation into future risk assessments | . 75 | | | 10.3. | | ring the residual risks of impacts from climate change in the | | | | | • | ny | | | | 10.4. | Ensurir | ng a flexible response | .75 | ### 1. Executive Summary Energy Networks Association (ENA) is the industry body for UK wires and pipes companies that carry electricity and gas to UK homes and businesses. This ENA Engineering Report (ERep) has been developed in response to the requirements placed on reporting authorities by the Climate Change Act and concerns:- - Identification of climate change impacts on the functions of licensed electricity distribution and transmission companies. - Proposed mechanisms for monitoring and actions to respond to the likely impacts of climate change "adaptation". This "core" assessment has been prepared by a task group of electricity distribution and transmission network operator members of ENA. The task group included the Department of Energy and Climate Change (DECC) and received inputs from the Office of Gas and Energy Markets (Ofgem), the Department for Environment, Food and Rural Affairs (Defra), Environment Agency (EA), the Met Office and other organisations. This ERep follows the structure set out by Defra and considers those issues that are common to companies across the UK. It is intended that companies can use this ERep as the basis for their individual reports which will also include company specific information. This ERep does not address the means by which risk is managed within member companies, which will be dealt with within their individual reports. Transmission and distribution companies in Great Britain are regulated businesses and operate under licences issued by Ofgem and are also are subject to common statutory requirements which are overseen by DECC and the Health and Safety Executive (HSE). Allowed revenues for the industry are currently set by Ofgem in periodic price reviews and therefore any costs associated with adaptation to climate change would need to be agreed with Ofgem. Transmission and distribution companies are responsible for transporting electrical power from generating plants to customers over their extensive networks. These networks comprise a mixture of overhead lines and underground cables and include points on the system called substations, where voltage transformation takes place and switching and control equipment are located. Overall levels of supply security are agreed by Ofgem and these standards specify the requirements for the availability of alternative supplies at various levels of customer load. Although these standards allow for the loss of multiple circuits they do not provide for certain low probability events including multiple failures or the total failure of a grid or primary substation. Particular attention must therefore be given to grid and primary substations when considering network resilience. Whilst every effort is made to ensure network security, companies have well developed business continuity and emergency plans to ensure an effective response to a range of events that can affect both transmission and distribution networks. Under the terms of the Civil Contingencies Act network operators are Category Two responders and work closely with other utilities, the emergency services and local authorities. They are also active participants in the DECC Energy Emergencies Executive Committee (E3C). Electricity transmission and distribution systems are made up of many different types of equipment including overhead lines, cables and transformers, which all comply with appropriate British and international standards. These standards are also used in parts of the world which already experience the climatic conditions predicted for the UK. Consequently it is expected that some of these existing standards will provide the appropriate functionality for the changes forecast for the UK during this century. Electricity network companies across the UK have experience in operating in a range of weather conditions and have always used the latest information when considering current threats and potential climate change impacts. For climate projections this was initially UKCP02, which was used by the Met Office in a report commissioned by energy companies and published in 2008. The report, EP2, investigated the potential impact of climate change on energy companies. UKCP02 has now been superseded by UKCP09, which is used in all current research. The EP2 report was a groundbreaking initiative that brought climate science closer to business applications. This was the first project sponsored by an entire sector to review the specific impacts of climate change on their industry. Supported by climate scientists, experts from the industry worked together to understand their precise requirements and developed practical applications and business strategies for a changing world. Further work has recently been commissioned with the Met Office to build a risk model that quantifies the relationship between climate and network faults, and also the vulnerability and exposure of the network to these faults. This model can be driven with climate projections to assess how network resilience may be affected by climate change. This ERep considers all other available evidence from a variety of sources including EA, SEPA, UK Climate Impacts Programme (UKCIP) and those involved in the National Climate Change Risk Assessment programme. The main impacts on electricity networks from the current climate change projections are: - Temperature—predicted increase. - Precipitation—predicted increase in winter rainfall and summer droughts. - Sea level rise—predicted increase. - Storm surge—predicted increase. At present there is no firm climate change evidence to support increased intensity of wind or ice storms both of which can cause extensive damage to overhead electricity networks. The ERep considers each component of transmission and distribution systems and uses current industry techniques to calculate the effects of climate change to 2099. For example in the case of overhead lines, the maximum current that can be carried (known as the rating) reduces as the ambient temperature increases. This ERep presents calculated reductions in rating for Low, Medium and High emission levels to 2099. In the case of overhead distribution lines the maximum current is reduced by typically 10% and for transmission lines by typically 3%. A similar approach is taken for underground cables and transformers. | Table 1 - Typical reductions in asset capacity for High Emissions at 90% Probability Level | | | | | | | | |--|--------------|---------------------------|--|--|--|--|--| | Equipment | | UKCP09 Period 2070 - 2099 | | | | | | | Overhead lines | Transmission | 3% | | | | | | | | Distribution | 10% | | | | | | | Underground | Transmission | 5% | | | | | | | Cables | Distribution | 4% | | | | | | | Transformers | Transmission | 5% | | | | | | | | Distribution | 7.5% | | | | | | A reduction in capacity can be seen as equivalent to an increase in load and these are relatively small capacity reductions compared with recent historical load growth. Increased precipitation, sea level rise and storm surge can all lead to flooding and the report considers the consequent risks. There has been recent experience of flooding in the North East, South Midlands and South Yorkshire during the summer of 2007 and Carlisle in 2005 which all highlighted the potential vulnerability of electricity substations to major flood incidents from current levels of flooding. In response to the floods and subsequent reports a task group was established to develop an industry response to flooding risk. Photograph 1 - An electricity substation protected by flood barriers in the 2007 floods in the North East of England The task group which comprised representatives from networks companies, DECC, Ofgem, EA, SEPA, Met Office and the Pitt Review team produced ENA Engineering Technical Report 138 (ETR 138). The report was accepted by E3C and companies have begun a circa ten year programme of work to improve substation resilience to flooding. ETR 138 is based on current flood risk and also provides an allowance for climate change adaptation. This is now being refined with new data being made available by EA. The essential aspects of ETR 138 dealing with adaptation are also dealt with in this ERep. The ERep also considers possible impacts from:- - Drought and the potential impact on safety electrical earthing systems. - Accelerated vegetation growth and its impact on overhead line performance. Other possible impacts are also reviewed including, electricity markets, finance, logistics and staff absence. Reference is also made to potential relationships with items on the National Risk Register. As required by the Defra guidance this ERep includes a risk matrix showing the relative likelihood and impact of all the identified risks and this is included in the executive summary for easy reference. This ERep sets out all these issues in some detail and makes proposals for adapting networks to climate change effects within the business planning cycle. Finally, the ERep deals with the main uncertainties and assumptions in the development of this adaptation programme. In addition to adaptation to climate change, there are also a wide range of activities being pursued by government and society in general to mitigate climate change by reducing-greenhouse gas emissions in order to slow the rate of global warming. These mitigation actions will have significant effects on electricity networks. The changes that will be needed to electricity networks to transform them into smart, low carbon networks may also
address a number of the climate change adaptation requirements. # Risk Matrix (Refers to UKCP09 projections for the end of the century assuming a High Emissions Scenario and 90% probability level and no adaptation measures taken) A more detailed matrix showing the changing risk profile during the century is shown in Appendix 8. #### 2. Foreword ENA is the industry body for UK wires and pipes companies that carry electricity and gas to UK homes and businesses. This "core" assessment has been prepared by a task group of electricity distribution and transmission network operator members of ENA which also included government regulators with inputs from Defra, EA, the Met Office and other organisations. The assessment is in response to the requirements placed on reporting authorities by the Climate Change Act. This assessment concerns the identification of climate change impacts on the functions of licensed electricity distribution and transmission companies and the proposed mechanisms for monitoring and actions to respond to the likely impacts of climate change; "adaptation". Although companies have to provide individual reports to Defra, this assessment considers those issues that are common to companies across the UK. Because the electricity network companies employ national equipment designs based on International, European and British Standards, many of the issues of climate change adaptation are common to all companies. Companies can use this ENA report as the basis for their individual reports which will also include any company specific information. Defra has issued statutory guidance to reporting authorities which includes instructions on the content of company reports. This report follows the structure set out by Defra in the guidance. In addition to adaptation to climate change there are also a wide range of activities being pursued by government and society in general to mitigate climate change, by seeking to slow down global warming by reducing greenhouse gas emissions. Examples include: - Measures to increase the amount of renewable generation connected to the electricity system - De-carbonising transport through take-up of electric road vehicles and trains - De-carbonising heating through energy efficiency, use of solar heating and heat pumps These mitigation actions have significant knock-on effects to electricity networks. The DECC and Ofgem joint chaired Energy Networks Strategy Group (ENSG) and work by Imperial College London with ENA provide useful background¹. The latter has pointed to a doubling in UK electricity peak demand from some 60 GW to almost 120 GW if "smart" network technologies are not employed to intelligently control and time shift demands. It is not the purpose of this adaptation report to cover this subject, though the changes that will be needed to electricity networks to transform them into smart networks will also serve to address a number of the climate change adaptation requirements. These are discussed further in Section 7.1 of this ERep. ¹ These documents are available at http://2010.energynetworks.org/smartmeters/ #### 3. Functions impacted by climate change # 3.1. Electricity Network Companies' organisation's functions, mission, aims, and objectives #### 3.1.1. Overview In the UK, generation is a competitive market. Energy supply companies buy electricity in bulk from generation companies and pay transmission and distribution companies to transport electricity through their networks to homes and businesses. Transmission and distribution companies are responsible for providing a reliable supply of electricity to their connected customers across the UK in an efficient manner whilst delivering excellent standards of customer service. These are regulated businesses and operate under licences issued by Ofgem and are subject to a common regulatory framework set by Ofgem. They are also subject to common statutory requirements including the Electricity Act and Electricity Safety Quality and Continuity Regulations (ESQCR) which are overseen by DECC and the HSE. As a consequence of these common drivers, UK electricity network operators have worked together for many years across a wide range of activity including: - Establishment of common equipment specifications and design standards, across the full spectrum of network assets, to reduce procurement costs and ensure availability of product - Establishing UK network owner input to the content, development and modification to national and international standards (BS, EN, IEC etc) - Providing a unified input to UK government, regulators (Ofgem, HSE etc) on development of regulations, processes, reporting etc. - Collaboration on research and development, including impacts of climate change, and work on asset designs/ratings This basis of a common industry background, asset standards and regulatory processes means that UK electricity network operators have very similar requirements when approaching the assessment of climate change impacts on their networks. The level of climate change will vary across the UK but the assessment of impact per unit of change, such as °C, can be established using common methodology, as set out in this report. Allowed revenues for the industry are currently set by Ofgem with individual network operators and these periodic reviews govern all expenditure which includes resilience against natural hazards and emergency planning. This provides common oversight and accountability to Ofgem and DECC. Therefore any costs associated with adaptation to climate change would need to be discussed with Ofgem who will also set the allowances. This would include costs directly associated with the network, e.g. overhead lines, underground cables and substations. It would also include costs linked to the supply chain and "softer" issues concerning potential climate impacts on staff. #### 3.1.2. Description of Networks In the UK, electrical power is transported from generating plants to customers over networks managed by transmission and distribution companies. The transmission system operates at typically 400,000 volts (400kV) or 275kV (and 132kV in Scotland) and the distribution system operates at voltages from 132kV to the normal household voltage of 230V. This is shown diagrammatically below. # **Typical Electricity Supply Chain** Figure 1 - Typical Electricity Supply Chain The system comprises a mixture of overhead lines and underground cables. In addition there are sites; called substations, where voltage transformation takes place and switching and control equipment are located. In England and Wales, National Grid own and operate the transmission system and the interface between transmission and distribution systems takes place within grid substations at 132kV. In Scotland the transmission networks are owned by Scottish Power and Scottish and Southern Energy, but National Grid operates the systems in the role of National Electricity Transmission System Operator (NETSO). The interface between transmission and distribution systems takes place within grid substations at 33kV. The characteristics of different types of substation are described in Table 2 below and the photographs in Appendix 1 illustrate the substations and overhead line connections. Circuit lengths are shown in Appendix 2. Network design takes account of normal load growth which has historically been around 1.5 to 2% per annum. Although this historical level of growth may reduce due to economic and energy efficiency pressures, load on the network is expected to double over the next forty years due to the requirements to reduce low carbon emissions described above. **Table 2 - Types of Electrical Table Substation** | Substation
Type | | Typical Voltage
Transformation
Levels | Approximate number nationally | Typical
Size | Typical Number of
Customers
Supplied | |--------------------|--|---|-------------------------------|-----------------|--| | Grid | Grid Grid 400kV to 132kV 380
Supply Point | | 250m by
250m | 200,000/500,000 | | | | Bulk
Supply
Point | 132kV to 33kV | 1,000 | 75m by
75m | 50,000/125,000 | | Primary | | 33kV to 11kV | 4,800 | 25m by
25m | 5,000/30,000 | | Distribu | ıtion | 11kV to 400/230V | 230,000 | 4m by 5m | 1/500 | #### 3.1.3. Levels of service The Grid Code covers all material technical aspects relating to connections to, and the operation and use of, the GB electricity transmission system and is approved by Ofgem. Licensed electricity distribution businesses are obliged under Condition 21 of their licences to maintain a distribution code detailing the technical parameters and considerations relating to connection to, and use of, their electrical networks, again approved by Ofgem. Overall levels of supply security are agreed by Ofgem and contained in: - Transmission systems The National Electricity Transmission System Security and Quality of Supply Standard - Distribution Systems ENA Engineering Recommendation P2/6 in England and Wales and Scottish Distribution Planning Standard (mirrors P2/6) These security standards specify the requirements for the availability of alternative supplies at various levels of customer load. Although these standards allow for the loss of multiple circuits they do not provide for certain low probability events including multiple failures or the total failure of a grid or primary substation. Particular attention must therefore be given to grid and primary substations when considering network resilience. As part of the periodic price review process, Ofgem sets standards of service targets for companies which directly relate to the reliability of supply experienced by connected customers. These targets include: Guaranteed standards covering - Payments to customers without supply for more
than 18 hours. (Subject to exceptional event exclusions such as storms) - Payments to customers suffering frequent interruptions. Financial incentives/penalties for companies covering performance against targets for the number and duration of supply interruptions experienced by customers. The aim of this report is to set out a managed mechanism for adapting to climate change which allows companies to continue to deliver the reliability of supply currently expected. #### 3.1.4. International and National Standards As mentioned above, electricity transmission and distribution systems are made up of many different types of equipment including overhead lines, cables and transformers. Current equipment complies with appropriate International and British Standards (see Appendix 5). Given that more onerous climate conditions than those predicted in the UK are already being experienced now in parts of the world where these standards apply, it is apparent that the assets built to these standards will be able to remain in service, albeit with a potentially reduced capacity, even allowing for the changes forecast for the UK by 2099. In addition, equipment in the UK normally complies with industry standards that have been developed and enhanced over many years to ensure that UK networks are built using high specification, safe equipment that is fully interchangeable and can be installed and operated in a similar manner across the UK. These industry standards and engineering practices have been established over the years through ENA and predecessor organisations and therefore, because UK networks are built on a common basis, they will all experience similar impacts from similar changes in climate. This underlines the reason for a common approach to national issues in adaptation. The production of new ENA documents and the updating of existing documents is covered by an agreed process involving ENA transmission and distribution network operators. Some ENA documents are annexed or are appendices to the Grid or Distribution Codes and therefore any modifications are subject to governance by the Grid or Distribution Code Review Panels. The development and review of National and International Standards is subject to well established procedures and UK electricity network operators, via ENA, have experience of leading and influencing this work through BSI and European and International standards organisations. The photographs below show equipment installed in different environments and over some 40 years during which time the relevant standards have evolved. Photograph 2 - EHV 1950s UK manufactured oil circuit breaker (similar to that still operated in the UK) in service in Malaysia where ambient temperature can exceed 30°C Photograph 3 - 132kV Grid Transformer and circuit breakers in service in the UK #### 3.1.5. Emergency Planning Emergency planning issues of shared interest to the government, industry and the regulator are reviewed and managed through the framework of the Energy Emergencies Executive (E3). The Executive is made up of a senior representative from DECC, industry and Ofgem, and is supported by a committee (E3C) chaired by a Director of National Grid and comprising representatives from customer organisations, electricity companies, trade bodies, DECC and Ofgem. The committee meets every two months and has a number of active task groups working on various issues. The ENA led review of the resilience of substations to flooding is an example of the work undertaken within the E3C framework. Whilst every effort is made to ensure network security, network companies have well developed emergency plans to ensure an effective response to a range of events that can affect both transmission and distribution networks. Overhead line systems are susceptible to severe weather conditions such as wind storms and lightning and consequently companies are required to implement their emergency response procedures on a regular basis which ensures they are tested and practiced. These plans also cover other incidents such as flooding. Customer communication for problems affecting customers' supplies is the responsibility of distribution network operators and they have sophisticated telephony systems that are capable of answering very large numbers of simultaneous customer calls. Through ENA, network operators, meet regularly to review emergency planning and response arrangements covering issues ranging from wind storms to influenza pandemics. Network companies are all members of a mutual aid consortium called the "North East West South Area Consortium" (NEWSAC). In an emergency, affecting one or more member companies, the NEWSAC group representatives will assess the availability of resources from those companies least affected and agree the allocation of these resources based on the level of damage. The NEWSAC agreement has been in place and utilised over many years, most recently during the 2007 floods when CE Electric received assistance from Scottish Power and Central Networks. Under the terms of the Civil Contingencies Act, network operators are Category Two responders and work closely with other utilities, the emergency services and local authorities. This includes working with resilience teams on emergency planning, taking part in exercises and participating in gold, silver or bronze commands. The Electricity Act and the ESQCR already includes powers for the Secretary of State in relation to continuity of supply, including powers to give directions for preserving security of electricity supply. The Minister twice exercised these powers in 2002 in the setting up of independent reviews of "Resilience of the Electricity Supply Industry". Whilst emergency planning is vital for managing serious incidents it is not appropriate for controlling climate change risks. ### 3.2. Effect of current and possible future impacts of climate change #### 3.2.1. Current Position Electricity network companies across the UK have experience in operating in a range of weather conditions and have always used the latest information when considering current threats and potential climate change impacts. For climate projections this was initially UKCP02 which has now been superseded by UKCP09 (see below). Other information includes: - ENA Engineering Technical Report 111 which provides the theoretical background to the data and diagrams produced in Technical Specification 43-40 (Specification for single circuit overhead lines on wood poles for use at high voltage up to and including 33 kV). ETR 111 quantifies appropriate snow accretion loadings on overhead lines in different areas of the UK. - Department of Energy 'Review of Technical Standards for Overhead Lines following Storm Damage in December 1981 and January 1982' – the Baldock Report. - COST 727, a European project addressing the measurement and forecasting of atmospheric icing on structures. To address these matters, companies have adopted a common approach, usually through ENA, and therefore have considerable experience in successfully managing issues in this way. ## 3.2.2. UK Climate Projections The UK Climate Projections (UKCP09) provide climate information for the UK up to the end of this century. Projections of future changes to our climate are provided, based on simulations from climate models. The projections show three different scenarios representing high, medium and low greenhouse gas levels. The types of climate information provided are: - observed climate data (20th and 21st century historical information about temperature, precipitation, storminess, sea surface temperatures and sea level) - future climate projections (for temperature, precipitation, air pressure, cloud and humidity) - future marine and coastal projections (for sea level rise, storm surge, sea surface and sub-surface temperature, salinity, currents, and waves). The scenarios are described in Appendix 10 which is an extract from UKCP09 supporting information. #### Impact on electricity networks 3.2.3. The table below shows possible current and future impacts different types of climate change event on network components or services. Table 3 - Possible current and future impacts of climate change (Refers to UKCP09 projections for the end of the century assuming a High Emissions Scenario and 90% probability level and no adaptation measures taken) | Climate Change Risks | | Network Component/Function at Risk | | | | | | | | | | | | | | |----------------------|---|------------------------------------|--------------|------------------|----------------|--------|------------|----------|-----------|--------------------------|--------|-----------|----------------|-----------------------|---------------------| | Risk
Type | Specific Risk | Substations | Transformers | Circuit Breakers | Overhead Lines | Cables | Protection | Earthing | Logistics | Vegetation
Management | Spares | Resources | Communications | Operations
Centres | Customer
Service | | | Flooding (Fluvial) | Н | М | М | L | NE | Н | NE | М | NE | М | Н | М | М | Н | | | Flooding (Pluvial)/ Heavy Rain | М | М | М | L | NE | М | NE | L | NE | L | М | L | L | М | | | Flooding (Sea Breach including erosion risks) | Н | М | М | L | NE | Н | NE | М | NE | М | Н | М | L | Н | | Extreme | Dam Inundation | Н | Н | Н | Н | NE | Н | NE | М | NE | NE | L | L | L | L | | Events | Ice & Wind | L | L | L | Н | NE | NE | NE | Н | Н | NE | Н | Н | L | Н | | | Hurricane and other high wind events | L | L | L | Н | NE | NE | NE | Н | Н | NE | Н | Н | М | Н | | | Extreme prolonged temperature periods | L | М | L | М | М | NE | NE | L | L | NE | Н | Н | М | Н | | | Lightning | М | М | L | Η | NE | NE | NE | NE | L | NE | NE | NE | NE | NE | | | Temperature Increase | NE | L | L | L | L | NE | NE | NE | М | NE | М | М | NE | NE | | Gradual
Warming | Drought (Soil Drying and Movement) | М | L | L | M | L | L | M | NE | М | NE | NE | L |
NE | NE | | | Demand increase due to Mitigation and HVAC | NE | Н | NE | Н | Н | NE | NE | NE | NE | NE | L | NE | NE | NE | H = High Impact, M = Medium Impact, L = Low Impact, NE = None Expected High Network component/function temporarily disabled. Function severely disrupted. Medium Network component/function substantially reduced in capacity or damaged. Function disrupted. Network component/function reduced in capacity or suffers minor damage. Function suffers minor disruption. Low ENA Engineering Report 1 May 2011 Page 19 However, this report focuses on the main impacts on electricity networks from the current climate change projections which are: - Temperature—predicted increase. - Precipitation—predicted increase in winter rainfall and summer droughts. - Sea level rise—predicted increase. - Storm surge—predicted increase. The potential impacts are described briefly below and are covered in more detail in Section 5. Other potential climate impacts are discussed in Section 3.2.7. # 3.2.4. Temperature effects Electrical current passing through electrical plant causes the equipment to heat up. The maximum current rating of electrical plant is generally governed by the equipment's maximum permissible operating temperature. This temperature is usually determined by the type of conductor/insulation material involved but there may be other considerations. # For example: - the sag of overhead line conductors increases with ambient temperature and this could compromise statutory ground clearances if too much sag occurs - ambient air temperature affects soil temperature which in turn affects its ability to conduct heat away from underground cables. Once the ambient and maximum temperatures in which the equipment is operating are agreed, the maximum temperature rise is set and this determines the amount of current that a given piece of equipment can carry. Clearly, if the ambient temperature increases the available temperature rise decreases and the maximum current rating is reduced. #### 3.2.5. Precipitation Increased winter rainfall will result in increased river flow rates and a potential increase in flood levels. Overhead lines and underground cables are generally not susceptible to flooding but there is a potential for overhead line statutory safety clearances to be affected in flood conditions. However, the type of equipment operating at substations can be vulnerable to flooding if water reaches certain critical depths. The loss of supply incidents in 2007 in Yorkshire and Gloucester all occurred as a result of substation flooding when exceptionally high water levels reached critical depths at some substations. Increased rainfall also brings the risk of surface water and ground water flooding which can again threaten substations. Summer drought conditions can lead to a reduction in the ability of the ground to conduct heat from underground cables. This can result in the maximum current rating of cables being reduced or cable faults developing that could interrupt customers' supplies if cables are allowed to operate at higher temperatures. This latter issue can be a particular concern for higher voltage cables. Droughts can also lead to ground movement that may damage underground cable systems or structures. # 3.2.6. Sea Level Rise and Storm Surge These types of incident would have a similar effect to river flooding except the volumes of water are potentially far greater with more widespread flooding, greater damage to infrastructure and a longer recovery period. #### 3.2.7. Other Climate Threats The most common current weather threats to electricity networks are wind storms, lightning and to a lesser extent ice accretion. Wind storms and ice accretion have the potential to cause widespread devastation and there are recent examples across the world of extensive damage to electricity infrastructure. #### Wind Storms Widespread interruptions to customer supplies have occurred on a number of occasions in the UK including in 1987, 1990, 1997, 1998 and 2002. Although this type of incident can be very disruptive, repairs can normally be carried out relatively quickly and typically most customers' supplies are usually restored within a few days apart from more remote rural areas. However there have been two recent incidents in France where restoration times were extended due to the extent of the damage. #### Ice Storms There is limited recent experience of ice storms in the UK, with incidents occurring mainly in Scotland and Northern England, but they have the potential to interrupt customers' supplies for longer periods than wind storms and there have been a number of incidents abroad notably affecting Canada in 1998. The photographs below show the effect of icing on an 11,000 volt rural overhead line in North West England in January 2010, with ice accretion on the conductors and a broken pole. Photograph 4 - The effect of icing on an 11,000 volt rural overhead line in North West England in January 2010 # Lightning Lightning storms are regular occurrences in the UK and can damage overhead lines and connected equipment. Distribution circuits are more difficult to protect against lightning and generally suffer more damage than transmission equipment. # Heat Waves/Drought Heat waves can lead to equipment being damaged due to high operating temperatures. In addition, localised drying of subsoil can increase ground resistivity, reducing the ability of cables to dissipate heat into the ground which can lead to rapid degradation and failure. This type of situation occurred in Auckland, New Zealand in 1998. At present UKCP09 does not provide any guidance on the potential effects of climate change on these weather threats. Electricity companies are maintaining close contact with the Met Office, as indicated in Section 2, and this will ensure that companies have the most up to date information on these potential threats enabling companies to plan ahead and develop adaptation schemes if this becomes necessary. Recent work with the Met Office (Project EP2) concludes that there is no need to change current ground resistivity figures when calculating cable ratings. # Vegetation Increased vegetation growth rates and extended growing seasons bring about a need for greater or more frequent cutting to prevent vegetation causing faults on overhead lines. This results in higher vegetation management costs. # 3.3. Assessment of climate thresholds above which climate change and weather events will pose a threat These thresholds are generally determined by the standards and specifications to which items of plant and equipment have been designed and constructed. These are normally based on international standards that take into account a wide range of climatic conditions e.g. including both hot and cold climates. Appendix 5 provides further information. ## 3.3.1. Temperature effects Increased ambient temperature can reduce plant and overhead line ratings. This can be a particular problem with transformer ratings in urban areas where air conditioning load is likely to have a coincident peak. Network operators now experience a proportion of their circuits with maximum loading occurring in summer hot spells as opposed to winter cold spells Current security standards are based on maintenance being carried out during historically relatively lightly loaded summer conditions and increased summer loadings are likely to cause increasing operational difficulties. # 3.4. Potential impacts of climate change on key stakeholders For the purposes of the adaptation programme, the following sectors/organisations have been identified as electricity network companies' key stakeholders: - Connected customers - Generators - Ofgem (also concerned with mitigation) - DECC (also concerned with mitigation) - HSE - Defra - EA - SEPA - Regional and Local Resilience Forums - Other utilities - Regional Development Agencies - Local Authorities - Devolved Administrations - Supply Chain - Contractors - Land owners and farmers In developing adaptation plans it is important that they are co-ordinated with key stakeholders to ensure a consistent and effective approach. For example it is essential that companies' plans and Ofgem's plans are in harmony and that equipment providers' plans will enable companies to deliver any reinforcement or replacement projects that may be required to safeguard the electricity system. Under Ofgem regulatory requirements, companies are required to consult with key stakeholders. These include local resilience forums and regional resilience teams with whom companies work to develop local and regional risk assessments. # 4. Approach used to assess risk # 4.1. Evidence, methods and expertise used to evaluate future climate impacts including sources and references The majority of the evidence base for this report is centred on UKCP09 and considers the 90% probability level with High, Medium and Low emission scenarios to test sensitivity. One of the main advances in UKCP09 is that it provides probabilistic projections. This means that different future climate outcomes are described in probabilistic terms, based on the strength of evidence associated with them. As such, probability levels associated with a given change should be interpreted as indicating the relative likelihood of the projected change being at or less than the given change. For example, if a projected temperature change of +4.5°C is associated with the 90% probability level at a particular location in the 2080s for the UKCP09 medium emission scenario, this should be interpreted as it is projected that there is a 90% likelihood that temperatures at that location will be equal to or less than 4.5°C warmer than temperatures in the 1961–1990 baseline period. Conversely, there is a 10% likelihood that those temperatures will be greater than 4.5°C warmer than the baseline period. The emission scenarios are described in UKCP09 as a plausible representation of the future development of
emissions of substances (e.g. greenhouse gases and aerosols that can influence global climate. These representations are based on a coherent and internally consistent set of assumptions about determining factors (such as demographic and socioeconomic development, technological change) and their key relationships. The emissions scenarios used in UKCP09 do not include the effects of planned mitigation policies, but do assume different pathways of technological and economic growth which include a switch from fossil fuels to renewable sources of energy. Information has also been considered from EA and SEPA. In addition, companies have been engaged in a number of initiatives related to climate change impacts, which are described below. # 4.1.1. Work on flooding resilience The serious incidents of flooding in the South Midlands and South Yorkshire during the summer of 2007, and the incident at Carlisle in 2005 highlighted the potential vulnerability of electricity substations to major flood incidents from current levels of flooding. The ESQCR Section 3 (1) (b) state that "Generators, distributors and meter operators shall ensure that their equipment is so constructed, installed, protected (both electrically and mechanically), used and maintained as to prevent danger, interference with or interruption of supply, so far as is reasonably practicable." However, in the absence of any specific guidance on the level of acceptable flood risk or regulatory impact assessment, it was recognised that the extent of the duty has been unclear. Since the introduction of the ESQCR far greater information on flood levels has become available to assess flood risk to substations and the respective mitigation options and costs. This facilitated the development of an industry ETR 138, setting out a common approach to the assessment of flood risk and the development of target mitigation levels that are subject to cost benefit assessment. The Task Group that produced ETR 138 comprised representatives from networks companies, DECC, Ofgem, EA, SEPA, Met Office and the Pitt Review team. The report was accepted by the E3C and companies have begun a circa ten year programme of work to improve substation resilience to flooding. Ofgem set allowances of approximately £110 million which distribution companies agreed as part of the Distribution Price Control Review (DPCR). DPCR5 is the most recent and runs from 2010 to 2015. Transmission companies have already started their resilience work and expect to formally agree a programme with Ofgem at their next price review in 2013. ETR 138 is based on current flood risk and also provides an allowance for climate change as indicated in the section on substations below. #### 4.1.2. Work with the Met Office A number of UK energy companies commissioned the Met Office to carry out a project to investigate the potential impact of climate change and this report was published in 2008. The executive summary is attached as Appendix 3. # **Background to the Met Office Project EP2** This was an industry-funded project involving 11 UK energy companies focussing on the priorities identified by an earlier scoping study. It was a groundbreaking initiative that brought climate science closer to business applications. This was the first project sponsored by an entire sector to review the specific impacts of climate change on their industry. Supported by climate scientists, experts from the industry worked together to understand their precise requirements and developed practical applications and business strategies for a changing world. The project covered the following areas: - Developed innovative new techniques that apply climate models to energy applications so that the industry is better placed to adapt to climate change. - Investigated future wind resource, enabling the industry to understand the continued uncertainty of future wind power. This will assist risk management and investment decisions. - Modelled future soil conditions and their impact on cables so that companies can understand the cost and benefits of installing cables for a more resilient future network. - Built a tool to enable UK coastal and marine sites of interest to be screened to assess if sea level rise should be considered in more detail. - Investigated how the urban heat island effect may change in the future so that networks can develop plans for their infrastructure in cities. - Produced guidance to help make best use of public domain information on climate change such as the UKCIP new scenarios of climate change (UKCP09). UKCP09 provides a probabilistic presentation of future climate and enhanced regional detail. - Delivered new site-specific climatologies of temperature, wind speed and solar radiation that account for climate change so that decisions can be based on realistic climate expectations. # Latest project with Met Office addressing network resilience #### Introduction Following the completion of a feasibility study, a further contract was placed with the Met Office to build a risk model to quantify the relationship between weather and network faults, and also the vulnerability and exposure of the network to these faults. This model was then driven with climate projections to assess how network resilience may be affected by climate change. That research examined some 5.6 million individual faults on a national basis recorded in NaFIRS (National Fault and Interruption Reporting Scheme) over a 20 year period to identify those that were weather related and then analysed the fault incidence versus the severity of the related weather event, to provide a baseline from which to establish future fault trend impacts arising from changes in frequency and severity of weather events. The results of this work were presented at an ENA Workshop on 25th November 2010 attended by Defra, DECC and Ofgem. The following weather effects were considered: - Wind damage to overhead line systems due to gales and severe storms, normally arising from trees or windblown debris, but in very severe conditions breakage due to exceeding mechanical load capability. - Lightning damage to overhead line systems caused by very high voltages being generated in overhead conductors and connected equipment. - Ice accretion damage to overhead line systems caused by ice build up on conductors or supports causing extreme sag or breakage due to very high mechanical loading. - Solar heat faults causing damage to equipment due to overheating. - Flooding, which is referred to elsewhere in this report and is a particular threat to substations. # Baseline climate risk assessment: key conclusions Hazard and vulnerability are considered where hazard is defined as the occurrence of a fault on the electricity network caused by weather and vulnerability as the magnitude of impact on the network measured in the numbers of customers whose supplies are interrupted by the fault. #### Baseline hazard - Wind and gale is the primary cause of weather-related faults. A non-linear relationship was found between wind and gale faults and maximum gust speeds. Networks are not susceptible to faults unless wind gusts speeds are greater than a certain threshold. - Lightning is the second most common cause of weather-related faults. The meteorological quantity "convective available potential energy" was found to be a good proxy for lightning occurrence. - The third dominant cause of weather-related faults was snow sleet and blizzard (SSB). An analysis of England and Wales SSB faults identified that strong wind gusts in addition to snow were necessary to cause a fault. # Baseline vulnerability: key conclusions The greatest numbers of weather-related customer interruptions (Cls) in the historical record are caused by wind and gale and lightning faults. Although rain and flooding faults occur infrequently they can have a significant impact on the network. Combining the hazard and vulnerability assessment to measure risk, the baseline risk key conclusions are - Wind and gale faults pose the greatest risk to the low voltage distribution network, whilst lightning faults pose the greatest risk to the high voltage distribution network. - Irrespective of the type of faults, the transmission network is at low risk from weather-related faults because the equipment is more resilient to weather. However, when a fault occurs it may cause many more interruptions than the low or high voltage networks. These can be low probability, high impact events. # Future Climate Risk Assessment for the UK Electricity Network: National findings Using the relationships established in the baseline risk assessment between asset fault rates and severity of specific types of weather conditions, future risk was then assessed for climate change out to the 2080s #### Wind and gale faults - For all future time periods throughout the UK on both the distribution and transmission networks, estimates of wind and gale faults range from changes that are negative to changes that are positive, therefore it is possible that these faults may increase or decrease in the future. - In the 2080s the projected change in future UK wind and gale faults ranges from a decrease of 23% to an increase of 20% on the distribution network, and from a decrease of 30% to an increase of 25% on the transmission network. - Regionally there is more evidence of a reduction in faults in Northern England and Scotland compared to the South; however, this signal is not consistent over all the regional climate model runs. # **Lightning faults** - Lightning faults are projected to increase in the future as a consequence of more days with higher convection. - In the 2080s the projected change in future UK lightning faults ranges from a decrease of 3% to an increase of 75% at most, on both the distribution and transmission networks. - There is regional variation in the estimates; in particular the change may be smallest in the Midlands and the South East of England and greatest
in North England, North Wales and Scotland. # Snow, sleet and blizzard (SSB) faults (including ice) - SSB faults are projected to decrease. This signal is due to a decrease in the number of days when snow falls; this highlights a decrease in the frequency of SSB fault days, but not necessarily a decrease in the intensity of events when snow does fall. - In the 2080s the projected change in future SSB faults is for a decrease of approximately 50% to 90% on both the distribution and transmission networks. Regionally, the North of Scotland projections exhibit a smaller reduction than the rest of the UK. # Solar heat faults (analysis for distribution network only) - For all future time periods throughout the UK, the incidence of solar heat faults is expected to increase, due to projected increases in maximum temperatures. - The future fault distribution for solar heat faults has not been estimated their rare occurrence in the baseline period means that statistically robust relationships between fault numbers and weather parameters cannot be determined. Instead, a threshold exceedance analysis based on maximum daily temperature has been used as an indicator of the direction of change in the incidence of solar heat faults in future. - In the 2080s the projected change in future exceedance of the 90th percentile maximum temperature across the UK ranges from an increase of 88% to an increase of 246%, and the projected change in future exceedance of the 98th percentile maximum temperature across the UK ranges from an increase of 137% to an increase of 707%. The 90th and 98th percentiles of maximum temperature vary regionally (e.g. higher values in South East England than in Scotland would be expected), so there is little evidence for significant regional variations in the frequencies of exceedance of these thresholds. ## Flooding faults (analysis for distribution network only) - A UK-wide event-based analysis has been conducted for flooding. In the 2080s, for all events considered, projections show a mean increase in exceedance of rainfall amounts which have caused significant flooding events in the baseline period. The possibility of decreases cannot be ruled out, however, as some model runs still project slight decreases in exceedance for some of the rainfall events. - The absence of a flooding event in a particular licence area during the baseline period does not mean that that area is not vulnerable to flooding events. Major flooding events are statistically rare and the baseline period is short in terms of the occurrence of these events. The general increase in heavy rainfall projected by this analysis should therefore be considered as relevant to all licence areas. # 4.1.3. Other activities related to Climate Change Risk Assessment As a result of the establishment of an ENA task group to develop this report, electricity network operators have made a number of new contacts with Defra, EA, Cranfield University, UKCIP and those involved in the National Climate Change Risk Assessment programme. These new contacts have helped the task group test the industry's current evidence base and ensure all relevant sources of evidence are presented in this report. Finally, under Ofgem's Innovation Funding Incentive (IFI) companies have carried out a number of projects that provide knowledge about potential climate change impacts and these are listed in Appendix 4. #### 4.1.4. Other Evidence ## Air Conditioning Air conditioning is now widely available for commercial and domestic use and has had an increasing level of adoption in the UK, particularly in city environments where summer peak loads are now similar to winter peaks. Evidence on the future impacts of increased temperature is available from countries with similar infrastructure to the UK such as Australia and New Zealand. Recent information from an electricity utility in South East Queensland, Australia provides information on the impacts of air conditioning and the potential to manage these impacts by the development of smart grids. This provides a clear relationship between a mitigation initiative, smart grids, and a potential adaptation requirement to address consumer behaviour as a result of increased temperatures. More work is required in the UK to fully understand the potential impact of air conditioning load. #### Standards Current International Standards provide good evidence of the requirements for operating in hotter climates and UK equipment being purchased at present will normally comply with these standards. #### Wind Storms According to UKCIP, predictions for wind are very uncertain. Also, information provided by the Met Office at the DECC resilience workshop on 22 February 2010 clearly indicated that UKCP09 did not provide any conclusive evidence that climate change is likely to lead to an increase in the severity of high wind events, although there could be a possible increase in their frequency. #### Seasonal Demand Curve Milder winters are expected to reduce winter peak demand and air conditioning load is expected to increase summer demand, resulting in a flattening of the seasonal demand profile As mentioned above, at present networks are designed with a level of security that ensures that circuits can be taken out of service at more lightly loaded times in the summer to allow maintenance or construction activities. With a flatter demand curve, this will be more difficult to achieve and might require additional capacity to be developed, or even an enhancement to the security standards. # 4.2. Estimation of the impact and likelihood of risks occurring at various points in the future The Met Office EP2 project found that because of climate change: - With a few exceptions, such as the thermal ratings of equipment and apparatus, there is currently no evidence to support adjusting network design standards. - The risk profile for transformers will be affected. Design thresholds of temperature will be exceeded more often and there will be more hot nights in cities. - Soil conditions will change; higher temperatures and seasonal differences in soil moisture are expected. Future conditions could be included in cable rating studies by increasing average summer soil temperatures in the models by approximately 0.5°C per decade. - Wind resource is uncertain and understanding future resource represents a significant challenge. Although we don't yet have the answers, this project has highlighted possible strategies for improving our knowledge. # 4.3. Evaluation of the costs and benefits of proposed adaptation options #### 4.3.1. Introduction The main options for adaptation are: - a) Electricity network equipment - Modifying the specification of assets subject to normal replacement criteria to ensure they can meet predicted adaptation requirements during their asset life. - Minor adaption or up rating of current assets - Major adaption or up rating of current assets - Replacing current assets specifically to meet an adaptation requirement - b) Other issues including human factors and supply chain - Adaptation of internal processes including safety requirements - Adaptation of relationship with other organisations including suppliers. It is expected that required adaptation actions will be introduced gradually over the coming century. During the same period electricity network companies will be updating their networks as part of the move to the low carbon economy, whilst at the same time replacing aging assets and building new ones. Any necessary adaptation measures will be built into the specifications and designs for the new plant. In considering these options it is important for network operators to ensure they carry out cost/benefit assessments for each potential issue to determine which course of action is appropriate. This should include consideration of customers' "willingness to pay" for this type of adaptation as assessed by Ofgem and the cost/benefit assessments should also take into account societal aspects. This type of approach has recently been agreed with Ofgem and DECC regarding current and future substation resilience to flooding in ETR 138. An extract of this report showing the approach to cost/benefit assessments is included as Appendix 7 and this type of approach may be adopted by companies in their response to climate change risk. # 5. Summary of risks which affect functions, mission, aims, and objectives A summary of risks is shown in the two tables below, following which these risks are considered by asset type. Replacement cycles provide an opportunity to build adaptation at an incremental cost and this is discussed under each asset. Table 4A - Possible current and future impacts of climate change which affect functions, missions, aims and objectives (Refers to UKCP09 projections for the end of the century assuming a High Emissions Scenario and 90% probability level and no adaptation measures taken.) | Climate Change Risks | | Network Component/Function at Risk | | | | | | | | | | | | | | |----------------------|---|------------------------------------|--------------|------------------|----------------|--------|------------|----------|-----------|--------------------------|--------|-----------|----------------|-----------------------|---------------------| | Risk
Type | Specific Risk | Substations | Transformers | Circuit Breakers | Overhead Lines | Cables | Protection | Earthing | Logistics | Vegetation
Management | Spares | Resources | Communications | Operations
Centres | Customer
Service | | | Flooding (Fluvial) | Н | М | М | L | NE | Н | NE | М | NE | М | Н | М | М | Н | | | Flooding (Pluvial)/ Heavy Rain | М | М | М | L | NE | М | NE | L | NE | L | М | L | L | М | | Extreme | Flooding (Sea Breach including erosion risks) | Н | М | М | L | NE | Н | NE | М | NE | М | Н | М | L | Н | | Events | Dam Inundation | Н | Н | Н | Н | NE | Н | NE | М | NE | NE | L | L | L | L | | | Extreme
prolonged temperature periods | L | М | L | M | M | NE | NE | L | L | NE | Н | Н | M | Н | | | Lightning | M | М | L | Н | NE | NE | NE | NE | L | NE | NE | NE | NE | NE | | | Temperature Increase | NE | L | L | L | L | NE | NE | NE | М | NE | М | М | NE | NE | | Gradual
Warming | Drought (Soil Drying and Movement) | М | L | L | М | L | L | М | NE | М | NE | NE | L | NE | NE | | | Demand increase due to Mitigation and HVAC | NE | Н | NE | Н | Н | NE | NE | NE | NE | NE | L | NE | NE | NE | H = High Impact, M = Medium Impact, L = Low Impact, NE = None Expected **High** Network component/function temporarily disabled. Function severely disrupted. **Medium** Network component/function substantially reduced in capacity or damaged. Function disrupted. **Low** Network component/function reduced in capacity or suffers minor damage. Function suffers minor disruption. # Table 4B ENA Adaptation to Climate Change Risk Matrix Showing Overall Impact (Refers to UKCP09 projections for the end of the century assuming a High Emissions Scenario and 90% probability level and no adaptation measures taken) #### Relative likelihoods Probability of a climate change effect having an impact under the change scenarios considered in the report. Definitions of relative impacts² **Extreme:** Regional area affected with people off supply for a month or more OR asset de-rating exceeds ability to reinforce network leading to rota disconnections on peak demand. **Significant:** County or city area affected with people off supply for a week or more OR asset de- rating requires a significant re-prioritisation of network reinforcement and deferment of new connection activities. Moderate: Large town or conurbation off supply for up to a week OR significant increase in cost of network strengthening. **Minor:** Small town off supply for a 24 hour period OR significant increase in cost of network maintenance requirements. **Limited:** Limited impact - can be managed within "business as usual" processes. A more detailed matrix showing the changing risk profile during the century is shown in Appendix 8. ² Areas affected can be as a result of single or multiple events. # Notes on the above Tables Table 4 shows the expected impact of different types of event on network components or functions. Table 4 contains only those risks identified as requiring consideration i.e. ice storms and wind storms are not included, whilst Table 3 above contains all potential risks. Table 4B shows the overall impact of these events. # Confidence Levels (Also covers Appendix 8) The report considers the predicted effects of climate change in accordance with the UKCP09 projections for the 90% confidence level at Low Medium and High emissions. The report demonstrates a high level of confidence in the predicted performance of networks under those conditions. # Thresholds (Also covers Appendix 8) ## Risks AR1, AR2, AR4, AR5, AR6, AR7, AR8, AR9 Warmer drier summers generally have a gradual impact and there are no particular thresholds. However, individual sites/equipment may be subject to thresholds that dictate when reinforcement or replacement is necessary and this will be monitored as part of the forward capital expenditure programme. # Risks AR10, AR11, AR13 Warmer wetter winters result in increased flood risk from rivers and surface/ground water and the thresholds in this case relate to the height of any flood waters compared with the height/protection at any substations at risk as set out in ETR 138. #### Risk AR12 Regarding the increased risk of sea flooding, the thresholds in this case again relate to the height of any flood waters compared with the height/protection at any substations at risk as set out in ETR 138. Note: For all potential flooding scenarios it will be necessary to monitor actual flood levels to check that the planned remedial action is appropriate. #### Risk AR3 A warmer climate with wetter winters leads to a longer growing season with vegetation interfering with overhead lines. Again this is expected to be a gradually increasing impact. Thresholds will be linked to the frequency of inspections and tree cutting. # 5.1. Overhead Lines (Risks AR1, AR2 and AR3) Typical overhead line types are illustrated in Appendix 1. Appendix 2 shows circuit lengths. # 5.1.1. Overhead electricity lines background information Nearly all overhead lines in the UK are constructed using wood poles or steel towers ("pylons"), though there are a few that use steel or concrete poles, but in the context of climate change, this is not relevant. The overhead lines structures are fitted with insulators that support wire conductors that carry electrical current. The conductors are not normally insulated and are usually copper or aluminium based and of different sizes to provide different current carrying capabilities. Because all electrical conductors have some electrical resistance, they heat up and expand when current is passed through them causing them to sag. The amount of sag is impacted by the ambient air temperature, heating from the sun (solar radiation) and offset by the amount of cooling winds. The amount an overhead line is permitted to sag is determined by the legal minimum heights of live electricity conductors over roads and over other ground. Thus the current rating of an overhead line is effectively determined by a heat balance equation – heat in vs. heat out, and based on a maximum conductor design temperature. The design of UK electricity networks is such that overhead lines of 33,000 volts (33kV) and above normally connect one large substation to another, with no intermediate connections, such that the current flowing into one end of the circuit is the same as that flowing out of the other end. At 11,000 volts (11kV) and low voltage, overhead lines radiate out from substations feeding small transformers or individual customers along the route. Consequently at these lower voltages, the current flowing in at one end of the circuit gradually reduces along the line as current is fed off to individual customers or small communities / businesses. It is important to make this distinction between the 11kV and lower voltage lines and 33kV and higher voltage overhead lines because of the extent of impact of reduction in ratings caused by climate change. The above paragraphs outline the relationship between climate and overhead line ratings, but there are also climate impacts on the structural integrity of overhead lines. Very high winds place structural wind loads on the overhead line poles, towers and conductors. These loads are also increased if there is ice build up ("accretion") on the overhead conductors because it increases the diameter subject to wind load. The wind loading increases as the square of the wind speed. The derivation of the wind load assesses either high wind or high ice conditions. Alternatively a combination of the two may be used and this issue is covered in more detail in Section 5.1.3. Further details on the above processes are given in Sections 5.1.2 and 5.1.3 below. # 5.1.2. Climate change and overhead line ratings The basic equations governing the derivation of overhead line current ratings have been well known for almost a century and used globally. Typical international examples are set out in IEEE Standard 738 and Cigre Technical Brochure 207. The above IEEE standard was used to determine the impacts of changes in climate on ratings and the results of the Met Office ("EP2") research. From a ratings perspective, the most challenging conditions prevail in high ambient temperatures, high solar radiation and low wind when there is minimum "leeway" between the ambient temperature and the rated conductor design temperature to allow for conductor heating due to the passage of current and little cooling influence. Most wood pole overhead lines and steel tower lines at 132kV and below in the UK are designed to a 50°C design operating temperature, whilst 275kV and 400kV higher voltage steel tower overhead lines normally have 75°C or higher design operating temperatures. The UKCP09 data and Met Office research has not currently identified a change in the prevalence of very low wind speeds (< 0.5 m/s) or in levels of solar radiation used in the present basis of UK design, but has identified a range of changes in ambient temperature across the UK in each decade, and for each emission scenario. Previous experience has shown that the limiting condition is the highest daily average ambient temperatures that have the greatest correlation with the highest electrical demands. Further research will be required in future years to check the ongoing validity of this, having regard, for example to uptake of air conditioning etc. The diagrams attached as Appendix 9 show, from UKCP09, the spread of changes in average daily maximum summer temperature for the high emission scenario for the periods 2010-2039 2040-2069 and 2070–2099. Additional maps are available showing the other scenarios and seasons. The effects of any of the individual temperatures on a representative range of typical overhead conductor types is established by multiplying the °C value, by the % rating reduction per °C figures derived from the Met Office research and is listed below. Conductor sizes on standard overhead lines range from 16mm² hard-drawn copper to 850mm² aluminium alloy, with rated temperatures varying from 50°C to 90°C and even up to 170°C. It would clearly be impractical to look at all these cases for the purposes of this assessment, so the following have been selected as being representative of the most common types of overhead line in the UK, along with the typical limiting rating season: Table 5 - Common types of overhead line | Conductor & Operating
Temperature | Rating | Existing Value | Reduction | |--------------------------------------|--------|----------------|-----------| | 25mm ² Copper @50°C | Summer | 126 Amps | 1.6% /°C | | 100mm ² Copper @50°C | Summer | 316 Amps
| 1.6% /°C | | 175mm ² Lynx ACSR @50°C | Summer | 432 Amps | 1.6% /°C | | 400mm ² Zebra ACSR @75°C | Winter | 1,230 Amps | 0.81% /°C | | 500mm ² Rubus AAAC @90°C | Winter | 1,600 Amps | 0.63% /°C | Figure 2 - Ranges of % de-ratings across UK It is important to view the above % de-ratings against past network operator experience in response to growth of electricity demand on their networks; effectively the same challenge. The above table indicates a range of de-ratings of distribution overhead lines (in the table, those of 175 mm² and below) of up to 8.6% over the period having a centre point in 2055. That equates to a ratings impact of some 0.19% per annum, whereas recent demand growth has impacted these same networks at some 1.5% per annum. The impacts of such reductions in ratings will vary from one circuit to another depending on how close the maximum demand on a particular circuit is to the circuit rating. In the case of 33kV and higher voltage circuits, when that limit is reached, the entire length of the circuit would have to be assessed to determine which locations required action to increase line height by changing supports (poles of towers) or by other action such as re-conductoring with higher operating temperature conductor and any consequential impacts on supports. For 11kV and LV circuits it is necessary to determine what proportion of the circuit would need to be elevated or re-conductored For all wood pole lines up to 33kV, sag increases would be fairly small (around 200mm per 5°C for a typical span) and in many spans there would be enough spare clearance to accommodate such an increase. Where clearance is unavailable, poles can be replaced for taller ones. It is unlikely that many <u>additional</u> poles would be needed in order to keep the existing conductors. Increasing the conductor size, however, will change pole loadings, which is likely to require more pole changes and possibly additional poles if the wind loading limits of existing intermediate poles are exceeded. The 2009 price basis unit costs of pole/tower replacement and re-conductoring of overhead lines in Ofgem DPCR 5 assessment are shown in Table 5 below. **Table 5 - Overhead Line Data** | Overhead Lines
GB | Total
circuit
km | Overhead Lines GB (Total numbers of supports) | Unit replacement cost | Full
Re-build | Conventional
re-
conductoring | |----------------------|------------------------|---|-----------------------------------|------------------|-------------------------------------| | Po | ole lines | | | | | | LV | 64,874 | 1,710,926 | LV pole
£1.4k | £28.4k /km | | | HV (6.6,11, 20kV) | 168,962 | 2.113,339 | HV pole
£1.8k | | | | EHV (33, 66kV) | 28,883 | 328,522 | EHV (33kV
pole) £2.2k | £42.0k /km | | | 132kV | 1,774 | 7807 | | | | | Steel | tower line | s | | | | | EHV (33kV) | 3,254 | 14,553 | 33kV tower
replace
£39.2k | | 33kV
£39.0k /km | | EHV (66kV) | | | 66kV tower
replace
£65.0k | | 66kV
£53.4k /km | | 132kV (DNO) | 14,697 | 33,438 | 132kV tower
replace
£108.9k | | £82.1k /km | Sources: Component numbers and circuit lengths supplied by Ofgem and is a summation of DNO regulatory returns submitted under the DPCR5 process (Table T4) for closing balances of all 14 Licensed UK DNOs as at 31st March 2010. Costs extracted from Tables 17 and 20 - Ofgem Electricity Distribution Price Control Review – Final Proposals – Allowed Revenue – Cost Assessment appendix Ref 146a/09 - 7th December 2009 For steel tower lines (at all voltages), structure replacement and/or modification represents significant work. Where de-rating such lines would be problematic, the most practical solution would most often be replacement of the conductors. With the advent of new, low-sag conductor technologies, finding a larger, replacement conductor that would minimise, if not eliminate, the need for structural reinforcement no longer presents an insurmountable technical challenge. Such conductors can, however, be relatively expensive. The above Ofgem reference also includes costs for conventional (not low sag) reconductoring of steel tower overhead lines on a per <u>circuit km</u> basis also shown in Table 6. Note that many designs have two circuits, one suspended on each side of the tower. # 5.1.3. Climate change and structural strength of overhead lines It has always been recognised that the structural strength of overhead lines should reflect the exposed environment in which they operate. The physical capability of any overhead line is determined by the effect of a maximum probable expected wind force on the conductors, usually although not always, loaded with a maximum probable ice. There have been UK statutory regulations controlling overhead line design since 1896, when the design criteria was required to be based on 125 mph winds with factors of safety of between 5 and 6 for conductors and between 6 and 12 for structures. In these calculations, factor of safety is the ratio of absolute strength (structural capacity) to calculated applied load. A more realistic approach to design was applied in 1924 when the statutory design criteria were changed to reflect the contribution of ice loading; this allowed the wind contribution to be reduced to 50 mph, but this wind pressure was now applied to conductors covered with a ½" of radial ice (a reduced ice loading of 3/8" radial ice was applied to LV conductors). With these more realistic design criteria the factors of safety were also reduced to 2 for conductors and between 2.5 and 3.5 for structures. Further changes were made to overhead line design involving small section conductor in order to improve the economic viability of extending the electricity network to rural areas and the design standard BS1320:1946 allowed these lines to be constructed without an ice burden, but with 70 mph wind pressure and a 2.5 factor of safety. This resulted in a huge increase in overhead line construction during the 1950's and early 1960's. Following severe storms in 1981/82 it was recognised that the BS1320:1946 design standards were insufficient, but instead of proscribing further specific national criteria, the statutory Electricity Regulations of 1988 required that 'all works shall be sufficient for the purpose for, and the circumstances in which they are used.' This allowed regional variations to be applied and the use of semi-probabilistic designs based on combining the maximum hourly wind pressure likely to occur in a 50 year return period and the maximum radial wet snow accretion likely to occur in the same return period. The regional weather information is contained in ENA ETR 111:1991, based on historic weather measurements at Met Office sites. More recently there has been a return to deterministic overhead line design techniques based on International Standards; BSEN 50423 for lines up to 45kV, and BSEN 50341 for lines of 45kV and above. The adequacy of the overhead line designs introduced since the Electricity Regulations of 1988 has been tested over many years and subject to post event review by government (DTI / BERR now DECC). UKCP09 does not provide information on future high wind speed events, but the Met Office presently advise that there is no evidence of an increase in the severity of high wind events, although there could be a possible increase in their frequency. This increased number of events has the effect of reducing the return period for the currently specified high wind events and will thus increase the wind pressure used in the calculations, if the same level of reliability is required. In respect of wet snow / ice loading, the UK network operators are participating in EU research (COST 727) which is reviewing ice accretion models across EU. It is currently anticipated that this research will indicate a reduction in the severity requirements used in UK overhead design criteria. Since the design criteria is based on both combined effect of wind and ice, it is expected that existing designs will probably have adequate structural strength and there will be no reason to modify existing networks or change the current design due to climate change impacts. The final draft of this report is expected to be published shortly. One related area which might however be affected by climate change, is conductor clashing. This is directly related to the gusts associated with the probable wind speeds, but because of the uncertainty in predicting the change in future wind speeds, it is not currently possible to recommend any changes to existing overhead designs. These decisions will need to be reviewed once more accurate climate predictions on wind and ice accretion are available. #### 5.1.4. Limitations on available information The following limitations have been identified in available information: - a) There is limited information on future changes in high wind speed events - b) There is no information on the combined probability of low wind speed (dead calm) events with high ambient temperatures. This combination has most effect on reducing overhead line capacity. - c) There is little probabilistic data on increased ambient temperatures generating light winds arising from convection currents generated from ground heating, though these conditions must already prevail in other global regions, albeit not necessarily in the coastal / island context of UK. The generation of winds under these conditions would ameliorate the effect of increased ambient temperatures on overhead line capacity. - d) Improved ice accretion data will be provided by the "COST 727" EU research, the results of which are expected shortly and should allow overhead lines to be designed more accurately to meet predicted ice loading. - e) Impacts of climate change on air conditioning demand and the timing relationship between peak ambient temperature and peak demand are not known and are subject to multiple other drivers such as building
regulations, energy efficiency measures on both buildings and air conditioning units, and energy pricing These in turn are impacted by "smart grid" technologies employed to mitigate low carbon economy impacts. However, there is much ongoing work in this area and this is referred to below. # 5.2. Vegetation Growth and Climate Change (Risk AR3) #### 5.2.1. Fundamentals The accelerated growth of vegetation and trees may cause a variety of power supply issues on overhead lines ranging from; transient or persistent interruptions (due to vegetation touching the line), through to severe damage (due to trees or branches falling onto the lines). Typically 25% of all low voltage overhead interruptions and 6% of all high voltage interruptions are related to vegetation induced faults and under abnormal weather conditions falling trees can lead to large scale power outages. Overhead lines are normally routed to reduce proximity to vegetation which may cause interference with the lines, but this is not always possible and it is both socially and environmentally unacceptable to remove all vegetation in proximity to overhead lines. Thus it is necessary to maintain electrical clearances between overhead lines and vegetation by vegetation management. An essential part of this management involves understanding the risks associated with vegetation under both ongoing and abnormal conditions. It is important to understand the growth rates of different types of vegetation with respect to the environment at the location and to be able to assess the risks posed by the proximity to the overhead line combined with the health and condition of the vegetation. Electricity network operators have always recognised the importance of efficient vegetation management in maintaining the performance of their overhead power lines and vegetation management is one of the largest annual recurring maintenance tasks undertaken by network operators, accounting for a substantial proportion of their budgets. Network operators are obliged to carry this out in order to meet their statutory obligations under the ESQCR, as amended in 2006. This requires network operators to 'so far as is reasonably practicable, ensure that there is no interference with or interruption of supply caused by an insufficient clearance between any of his overhead lines and a tree or other vegetation.' #### 5.2.2. Changes in Growing Season The external factors which can influence vegetation growth include temperature and rainfall. Climate change will therefore directly impact on growth rates, in particular the change in the number of days with a temperature over 5.6°C will impact the growing season, resulting in more and denser growth. Over the past decade a number of studies have confirmed this effect. In 1999, German research³ into changes in seasonal plant activity identified that the European growing season had extended by 10.8 days when compared with the early 1960s, with spring growth events (leaf unfolding) starting 6.0 days earlier and the autumn events (leaf colouring) delayed by 4.8 days. ³ Nature Vol. 397 Issue 6721(1999) Growing Season extended in Europe (A. Menzel and P. Fabian) In 2001, American research⁴ using NASA satellite data identified that plant life above 40 degrees latitude had been growing more vigorously since 1981. They concluded that the area of vegetation had not extended, but that the existing vegetation had increased significantly in density and that the timing of both the appearance and fall of leaves had shown dramatic changes over the two decades of recorded satellite data. In Eurasia, the growing season is now almost 18 days longer, on average, with spring arriving a week earlier and autumn delayed by ten days. The Met Office commented in 2006 that 'The longest thermal growing season in the 230-year daily Central England series occurred in 2000, when it extended for 328 days from 29th January to 21st December. The thermal growing season for this region of the UK is now longer than at any time since the start of the daily temperature series in 1772.' # 5.2.3. Vegetation Growth – Changes in Habitat Suitability In the longer term, the effect of a decrease in summer rainfall will also start to impact the vegetation growth of certain species, which are sensitive to drought. One example given in a Defra report⁵ is lowland beech, which has been identified as being particularly susceptible to climate change. Below are the projections in the future suitable habitats based on the UKCP09 data. Figure 3 - Projections of future suitable habitats based on the UKCP09 data As habitats gradually change, vegetation will gradually colonise new more suitable areas, but the health of existing susceptible vegetation species will deteriorate, resulting in an increased risk of these trees falling on to overhead lines. ⁴ http://science.nasa.gov/science-news/science-at-nasa/2001/ast07sep_1/ ⁵ Defra report England Biodiversity Strategy – Towards adaptation to climate change (May 2007) # 5.2.4. Assessing the Impact of Climate Change While the EP2 report did not include vegetation growth, the Met Office produced a report for the DTI Network Resilience Working Group in August 2003 entitled 'Extreme Weather Events likely to cause Disruption to Electricity Distribution' which included the following predictions: - In the South of the British Isles increased energy of storms may intensify and flash rates (lightning) may double. Note: This information is now superseded by the latest Met Office data described in Section 4.1.2 - It is predicted that deciduous trees will be in leaf for longer periods of time resulting in increased risk from storm related damage. In ENA ETR 132⁶, these predictions lead to the following comment: 'It needs to be recognised that if the UK is presented with increasingly adverse climatic conditions over the coming decades, the reliability of the network is likely to become more difficult to manage. The consequence of this is that there will be a need for an increased level of funding and resource to keep network resilience, including vegetation management, at or above its current level.' This view is supported by the fact that between 1990 and 2006 network fault statistics show that tree related faults on the UK electricity network showed a significantly increased trend. The introduction of the risk based approach to vegetation management under ENA ETR 132 should improve network performance in abnormal weather conditions, by the selected removal of high risk trees in the proximity of strategic overhead line circuits and this may have some consequential benefit under normal weather conditions, but is unlikely to prevent further increases in the number of interruptions due to the expected increased vegetation growth rates. This issue will need to be kept under review to confirm actual climate change impacts when maintenance can be adjusted accordingly. #### 5.2.5. Vegetation Growth Research Currently Underway In 2008 several network operators commissioned a four year research project with ADAS to quantify the impact of vegetation growth around overhead lines and in particular the manner in which the utility space (that is the physical volume around the utility's apparatus including the volume necessary to ensure its safe and reliable operation) was degraded by vegetation growth over time. ⁶ Energy Network Association Engineering Technical Report 132 – Vegetation management near overhead lines for the purpose of improving network performance under abnormal weather conditions Figure 4 – UK bioclimatic zones The ADAS vegetation management research project established approximately 1,700 experimental sites across the country in representative bioclimatic zones determined by the temperature, rainfall and soil conditions (see Figure 4). At each site the Utility Space Derogation (USD) is being measured on a biannual basis and these measurements are used to infer the net integrated rate of growth at each site and will determine the spatial and temporal growth rates for each bioclimatic zone. The initial results have shown a marked variation in growth rates across the country, which follow the bioclimatic zone areas. Using UKCP09 data, ADAS have predicted the future changes in the size and locations of the bioclimatic zones under different emission scenarios. If the growth rates from the initial observations follow the expected trends then this points towards climate change having a substantial impact on vegetation growth over the next ten years. The maps below show how growth rates will impact on the annual USD in this period. Figure 5 - Growth rates impacts on annual USD This research project is as yet incomplete, but the initial projections indicate that a significant increased level of vegetation management will be necessary across most areas of the UK. The potential impact of increase in vegetation cutting can be gauged from the fact that the allowed revenue set by Ofgem for the five year distribution network operator price control from 2010 is £500m (at a 2007/08 price base). # 5.3. Underground Cables (Risks AR4 and AR5) #### 5.3.1. Introduction Typical underground cable types are illustrated below and Appendix 2 shows circuit lengths. Photograph 5 - Typical underground cable types # 5.3.2. Underground electricity cables background information In the UK electricity cables are installed and operated at all the common voltages used on the electricity network from low voltage (400/230 volts) to 400kV. Cables are typically installed in more urban areas but can be used in rural areas where there are particular environmental issues that make them desirable. Lower voltage cables may be installed just 0.45m below the surface whilst higher voltage cables may be buried at depths of 1m or more. The length of cable operated at the highest transmission voltages is limited due to the substantial costs involved, however as cable voltages reduce, the cost premium compared to an
equivalent overhead line falls. Appendix 2 shows installed circuit lengths for the various operating voltages. Cable construction typically comprises a central conductor or conductors of copper or aluminium, immediately surrounded by insulation (the dielectric) with an outer electrical earthed metallic screen. Older and lower voltage cables are typically of three, or at low voltage four, core construction whilst higher voltage, more recently installed cables are more likely to comprise three single core cables laid close together. As with other electrical equipment, the rating of cables is typically limited by the maximum operating temperature of the insulation surrounding, the conductors. Older oil impregnated paper insulated cables have a design maximum conductor temperature of 65°C whilst modern plastic insulated cables have a design maximum conductor temperature of 90°C. Exceeding the maximum operating temperature can have a significant impact on the expected life of the cable. The temperature of the cable is determined by: Four sources of heat generation: - Electrical current passing through the electrical resistance of the conductor(s). - Direct heating of the electrical insulation caused by the alternating voltage, this is only significant in higher voltage cables. - Heating caused by eddy currents which circulate within the earth sheath of single core cables. - Other external sources of heat in the ground such as other adjacent cables. Balanced against this is the conduction of heat away from the cable: - The way cables are laid is a factor in this; cables laid in ducts are usually less able to dissipate the heat than those buried directly in the ground. - The thermal resistivity of the ground surrounding the cable or duct. Thermal resistivity itself is affected by the type of soil and the level of moisture it contains. - The temperature of the surrounding soil, which is itself affected by ambient air temperature. # 5.3.3. Climate Change The basic equations governing the derivation of cable ratings have been understood for many years and, within the UK, have been incorporated into a comprehensive suite of cable rating tools called CRATER which can be used to model any range of scenarios in relation to soil temperature and resistivity. Currently cable ratings in the UK are based on assumptions of temperature (air and soil) and thermal resistivity (soil) made more than 50 years ago. Global warming is predicted to result in generally hotter, drier summers and milder, wetter winters in the UK. These changes will impact directly upon cable ratings due to the increase in ground temperature and the potential for increased soil thermal resistivity if soils become dry. It is also likely that as soils dry out, particularly those rich in clay, that ground movement will occur which in turn may result in damage to cables and cable joints. The Met Office EP2 report established the effect climate change will have on the industry's infrastructure and business. The main findings in relation to cable assets are that air and soil conditions are expected to change, resulting in higher temperatures and in seasonal differences in soil moisture content. This report recommended that: - For every 1°C rise in air temperature, soil temperatures at depths of 0.45-1.2m can be expected to increase by 0.75°C. - Reduced precipitation levels will only impact ground resistivity values in extreme, prolonged drought conditions otherwise the effect is small at 1.2m depth. - The effects are similar for different soil types; sand-rich soils offer slightly more resilience to temperature change than types rich in clay or silt, but the variations are small when compared to the effects of changes in the air temperature. - Because of the small effect of soil type, climate change driven changes in air temperatures should be considered independent of soil type when calculating ratings. The diagrams attached as Appendix 9 show, from UKCP09, the spread of changes in average daily maximum summer temperature for the high emission scenario for the periods 2010-2039 2040-2069 and 2070–2099. Additional maps are available showing the other scenarios and seasons. The impact of these, more recent, climate change predictions as applied to cables using the guidance from the EP2 project are considered in Section 5.3.4. # 5.3.4. Impact of climate change on cable ratings This section considers the general impact of the UKCP09 climate change predictions on the rating of a range of typical cables used throughout the UK. These predictions will apply to the majority of cables installed in the UK however it is important to note that the predicted reduction in ratings may be exceeded in specific situations such as areas affected by urban heat island effects, or localised dry, sandy soil conditions which may be more prone to drying out as temperatures increase. Table 6 considers a range of commonly used cable types and installation methods and shows the percentage reduction in rating per °C of air temperature change calculated using CRATER. Table 7 shows the range of de-ratings for the 7 climate change scenarios extracted from UKCP09. Table 6 - Common types of underground cable | Description | Max
°C | Time | Installation | Existing
Rating
(Amps) | Rating
Reduction
%/ °C Air Temp | |-----------------------------|-----------|--------|--------------|------------------------------|---------------------------------------| | LV - 185 Cu Waveform | 80 | Summer | Direct Lay | 339 | 0.590 | | LV - 185 AL PILC-STA | 80 | Summer | Direct Lay | 335 | 0.597 | | 11kV - 185 AI XLPE 1C | 90 | Summer | Direct Lay | 370 | 0.507 | | 11kV - 185 AI XLPE 1C | 90 | Summer | Ducted | 360 | 0.521 | | 11kV - 185 AI PICAS 3C | 65 | Summer | Direct Lay | 270 | 0.787 | | 33kV - 185 AI XLPE 1C | 90 | Summer | Direct Lay | 457 | 0.492 | | 33kV - 185 AI XLPE 1C | 90 | Summer | Ducted | 430 | 0.494 | | 33kV - 185 Cu PILC 'H' | 65 | Summer | Direct Lay | 355 | 0.775 | | 132kV - 630 XLPE 1C | 90 | Summer | Direct Lay | 881 | 0.511 | | 132kV - 630 XLPE 1C | 90 | Summer | Ducted | 879 | 0.512 | | 132kV - 630 Cu Lead Sheath | 85 | Summer | Direct Lay | 755 | 0.579 | | 132kV - 630 Cu Lead Sheath | 85 | Winter | Direct Lay | 827 | 0.544 | | 400kV - 2000 XLPE 1C | 90 | Summer | Direct Lay | 1429 | 0.560 | | 400kV - 2000 XLPE 1C | 90 | Summer | Ducted | 1448 | 0.570 | | 400kV - 2000 XLPE 1C | 90 | Winter | Direct Lay | 1569 | 0.518 | | 400kV - 2000 Cu Lead Sheath | 85 | Summer | Direct Lay | 1052 | 0.986 | Table 7 - Ranges of % summer de-ratings across UK based on UKCP09 | rable / - Kanges of | | | ullill | | | iiig | acı | 033 | OIV L | Jasc | u on | OIX | JI 03 | | | |--------------------------------|------------------------|-----------------|--------|-----------------|-----|---------|-----|---------|-------|---------|------|-----|-------|-----|-----| | Cable Type | | 2010–39 2040–69 | | 2040-69 2040-69 | | 2070-99 | | 2070-99 | | 2070-99 | | | | | | | Emission Scenario | | M L | | М | | ı | Н | | L | | М | | Н | | | | | Range | Min | Max | Air Temp Incre | ase Range °C | 1.8 | 2.9 | 2.6 | 4.5 | 2.8 | 4.9 | 3.3 | 5.4 | 3.2 | 5.3 | 4.1 | 6.8 | 5.0 | 8.4 | | Soil Temp Incre | ase Range °C | 1.3 | 2.2 | 2.0 | 3.4 | 2.1 | 3.6 | 2.4 | 4.1 | 2.4 | 4.0 | 3.1 | 5.1 | 3.8 | 6.3 | | LV - 185 Cu
Waveform | Summer -
Direct Lay | 1.0 | 1.7 | 1.5 | 2.7 | 1.7 | 2.9 | 1.9 | 3.2 | 1.9 | 3.1 | 2.4 | 4.0 | 3.0 | 5.0 | | LV - 185 AL PILC-
STA | Summer -
Direct Lay | 1.1 | 1.7 | 1.6 | 2.7 | 1.7 | 2.9 | 1.9 | 3.3 | 1.9 | 3.2 | 2.4 | 4.1 | 3.0 | 5.0 | | 11kV - 185 AI XLPE
1C | Summer -
Direct Lay | 0.9 | 1.5 | 1.3 | 2.3 | 1.4 | 2.5 | 1.7 | 2.8 | 1.6 | 2.7 | 2.1 | 3.4 | 2.5 | 4.3 | | 11kV - 185 AI XLPE
1C | Summer -
Ducted | 0.9 | 1.5 | 1.4 | 2.3 | 1.5 | 2.5 | 1.7 | 2.8 | 1.7 | 2.8 | 2.1 | 3.5 | 2.6 | 4.4 | | 11kV - 185 AI PICAS
3C | Summer -
Direct Lay | 1.4 | 2.3 | 2.1 | 3.5 | 2.2 | 3.8 | 2.6 | 4.3 | 2.5 | 4.2 | 3.2 | 5.3 | 3.9 | 6.6 | | 33kV - 185 AI XLPE
1C | Summer -
Direct Lay | 0.9 | 1.4 | 1.3 | 2.2 | 1.4 | 2.4 | 1.6 | 2.7 | 1.6 | 2.6 | 2.0 | 3.3 | 2.5 | 4.1 | | 33kV - 185 AI XLPE
1C | Summer -
Ducted | 0.9 | 1.4 | 1.3 | 2.2 | 1.4 | 2.4 | 1.6 | 2.7 | 1.6 | 2.6 | 2.0 | 3.4 | 2.5 | 4.2 | | 33kV - 185 Cu PILC
'H' | Summer -
Direct Lay | 1.4 | 2.2 | 2.0 | 3.5 | 2.2 | 3.8 | 2.5 | 4.2 | 2.5 | 4.1 | 3.2 | 5.3 | 3.9 | 6.5 | | 132kV - 630 XLPE 1C | Summer -
Direct Lay | 0.9 | 1.5 | 1.3 | 2.3 | 1.4 | 2.5 | 1.7 | 2.8 | 1.6 | 2.7 | 2.1 | 3.5 | 2.6 | 4.3 | | 132kV - 630 XLPE 1C | Ducted | 0.9 | 1.5 | 1.3 | 2.3 | 1.4 | 2.5 | 1.7 | 2.8 | 1.6 | 2.7 | 2.1 | 3.5 | 2.6 | 4.3 | | 132kV - 630 Cu Lead
Sheath | Summer -
Direct Lay | 1.0 | 1.7 | 1.5 | 2.6 | 1.6 | 2.8 | 1.9 | 3.2 | 1.9 | 3.1 | 2.4 | 3.9 | 2.9 | 4.9 | | 400kV - 2000 XLPE
1C | Summer -
Direct Lay | 1.0 | 1.6 | 1.5 | 2.5 | 1.6 | 2.7 | 1.8 | 3.0 | 1.8 | 3.0 | 2.3 | 3.8 | 2.8 | 4.7 | | 400kV - 2000 XLPE
1C | Summer -
Ducted | 1.0 | 1.6 | 1.5 | 2.6 | 1.6 | 2.8 | 1.9 | 3.1 | 1.8 | 3.0 | 2.3 | 3.9 | 2.9 | 4.8 | | 400kV - 2000 Cu
Lead Sheath | Summer -
Direct Lay | 1.7 | 2.9 | 2.6 | 4.4 | 2.8 | 4.8 | 3.2 | 5.4 | 3.2 | 5.2 | 4.0 | 6.7 | 4.9 | 8.3 | Figure 6 - Ranges of % de-ratings across UK The above table indicates a range of de-ratings of distribution cables (indicated in the table as 33kV and below) of up to 4.3% over the period having a centre point in 2055. That equates to a ratings impact of some 0.10% per annum, where as recent demand growth has impacted these same networks at some 1.5% per annum. The impacts of such reductions in ratings will vary from one circuit to another depending on how close the maximum demand on a particular circuit is to the circuit rating. In the case of 33kV and higher voltage circuits, when that limit is reached, it is possible that the entire circuit may need to be replaced with a larger cable size or alternatively the capacity of the network increased by the
installation of additional circuits or substations. For 11kV and LV circuits, where the load on the circuit reduces over its length, it is necessary to determine what proportion of the circuit would need to replaced with a larger cable size or again it may be possible to increase the capacity of the network by the installation of additional circuits or substations. Where it becomes necessary to take action to replace an overloaded cable an estimate of the likely costs can be calculated using a typical cost per installed kilometre. In 2009 the estimated unit costs of cable replacement used in Ofgem's DPCR5 investment assessment (direct costs only) were: Table 8 - Estimated unit costs of cable replacement | Cable Type
(UG = Underground) | Cost /m | |----------------------------------|----------| | LV Main (UG Plastic) | £98.4 | | 6.6/11kV UG Cable | £82.9 | | 33kV UG Cable | £256.8 | | 132kV UG Cable | £1,047.1 | | 132 kV Sub Cable | £1,966.7 | Source – Tables 17 - Ofgem Electricity Distribution Price Control Review – Final Proposals – Allowed Revenue – Cost Assessment appendix Ref 146a/09 - 7th December 2009 The following quantitative information was supplied by Ofgem and is a summation of distribution network operator regulatory returns submitted under the DPCR5 process (Table T4) for closing balances of the 14 regional distribution network operators as at 31st March 2010. Table 9 - Underground Cables GB total circuit km | Underground Cables GB
total circuit km | | | | | | |---|---------|--|--|--|--| | LV | 328,038 | | | | | | HV (6.6, 11, 20 kV) | 153,884 | | | | | | EHV (33, 66 kV) | 21,188 | | | | | | 132 kV | 3,190 | | | | | As with overhead lines it is important to consider the above de-ratings against past network operator experience in response to growth of electricity demand on their networks; effectively the same challenge. Underground cable systems may also be affected by summer drought and consequent ground movement, leading to mechanical damage. # 5.4. Substation earthing (Risk AR6) # 5.4.1. Purpose Earthing is essential to enable faults, to be detected quickly and automatically made safe. When an earth fault occurs on the electricity distribution network (See Figure 3): - A large current will flow along the cable and return to the source via the cable sheath and the general mass of earth. - The current will flow until the source protection disconnects the power supply. - The current flowing through the earth will cause a considerable rise in voltage known as rise of earth potential (ROEP) or earth potential rise (EPR) on the ground and any metalwork near the fault creating a possible danger (touch and step potential) to anyone in the vicinity if this becomes excessive. - This rise in voltage may be transferred onto adjacent power and communication cables creating possible danger to anyone who might be in contact with them this can be some distance from the actual fault. Figure 7 - Earth fault current path Therefore the purpose of earthing is: To pass the fault current during an earth fault back to the system neutral to ensure the source protection system operates to disconnect supplies. This will be achieved by an earthing system which is designed to: - Prevent dangerous voltages appearing on customer installations. - Prevent dangerous voltages appearing at the substation and causing danger to staff or the public. - Prevent damage to sensitive equipment (e.g. communications). - Discharge any lightning surges to earth. #### 5.4.2. Description of an Earthing System An earthing system is a collection of one of more electrodes installed in the ground. The earthing system usually consists of a number of copper rods interconnected by copper tape or copper conductor. All metallic plant, equipment and structures on a site are then connected to the earthing system. Where necessary some plant and equipment which might otherwise experience excessive rise of earth potential will be deliberately separated from this earthing system and could be provided with their own separate earthing system. The size of earthing system will depend on the type of site and its complexity. A typical pole-mounted site will often have a single earth rod whereas a large substation will have an earth mat covering the complete site. The earthing system at most sites is based around a standard design. The design at larger substations requires measurements and complex calculations to be carried out prior to construction, whereas smaller substations and pole-mounted sites rely on measurements carried out during installation to achieve a satisfactory value of earth resistance. Typical values of earth resistance are given in Table 9. Table 10 - Typical earthing system resistance values | Substation Type | Typical Voltage
Transformation Levels | Approximate number nationally | Resistance Value (Ω) | |----------------------------|--|-------------------------------|-------------------------------| | Grid | 400kV to 132kV | 380 | | | Gild | 132kV to 33kV | 1,000 | < 0.1 | | Primary | 33kV to 11kV | 4,800 | < 0.1 | | Secondary ground-mounted | 11kV to 400/230V | 220,000 | <1 | | Secondary pole-
mounted | 11kV to 400/230V | - 230,000 | <10 | | LV system | 400/230V | Millions | <20 | Earthing systems require excavation for installation and are therefore designed to provide a resistance values which are safe and conservative but not over-engineered in order to minimise cost of construction. # 5.4.3. Impact of Climate Change on Earth Resistance The resistance of an earthing system is mainly determined by the soil/geology in contact with the earthing system and the soil/geology in the immediate vicinity of the earthing installation. Different soil/geology types exhibit different values of resistivity - some typical values are shown in Table 10. Figure 4 provides an indication of the effect of the soil/geology on the earthing installations for the UK Power Networks and Central Networks (Now part of Western Power Distribution) areas. Table 11 - Typical soil and geology resistivity values | Soil/Geology Type | Typical Soil Resistivity (Ω/m) | |-------------------|--------------------------------| | Loam | 25 or less | | Chalk | 50 or less | | Clay | 100 or less | | Clay/Sand/Gravel | 150-300 | | Slate/Shale/Rock | 500 or less | Figure 8 - Typical effect of soil/geology variations on earthing installations Earthing resistance changes with time as the resistivity of the ground varies in response to changes in water content and for shallow installations, temperature. If the variations in moisture and temperature caused by climate change adversely affect the soil resistivity the earth resistance could increase and the earthing installations would no longer satisfy the requirements of the original earthing design. Generally earthing systems are designed to cater for a degree of seasonal and regional variations. The important point is to understand the relative size of the effects that climate change might have with respect to these regional variations in soil/geology type and with respect to other contributing effects, such as change in soil moisture measurements when made in summer as opposed to winter. # 5.4.4. Risk & Mitigation A standard risk assessment approach is used in earthing design to assess the risk and provide appropriate mitigation. This is based on the staff or customers being exposed to the risk, the likelihood, and the touch and step potentials generated. However to gain a better understanding of the effect of climate change on earthing and to identify the risks and determine a suitable mitigation strategy further research is necessary. The National Soil Research Institute (NSRI) at Cranfield University and the British Geological Survey (BGS) have been working with UK Power Networks and Central Networks (Now part of Western Power Distribution) over the last couple of years to produce an earthing mapping system under the Ofgem Innovation Funding and Incentive (IFI) scheme. The earthing mapping system specifies the amount of earthing and the type of installation to obtain the required value of earth resistance. Discussions have been held with NSRI and BGS to extend this work to account for the effects of seasonality and climate change on earthing. It is envisaged that this would include the following: - An analysis of UKCIP climate models to assess climate variations especially extended 'dry' periods, and extremes of drought. - Use the knowledge from earthing mapping system from phase one to highlight those soils and geology types most susceptible to climate change. - Use asset databases to cross match assets with 'sensitive' climate/season and soil-geology areas. - Assess legacy (especially 'very shallow trench') installations to determine suitability for upgrade/remediation to deep drive. - Provide modified version of the earthing mapping system which incorporates an allowance for seasonality and climate change. Mitigation measures are likely to be different for new installations and for existing installations. For new installations, the mitigation measure will consist of updating design standards. New installations will be built to withstand greater temperature and moisture variations than the current seasonal cycle, in order to withstand expected changes to climate. Whilst design costs are unlikely to change, there is likely to be an incremental cost for additional materials and installation time where more rods need to be installed. For existing installations, the mitigation measure is likely to consist of an inspection regime prioritised by risk. Although earthing is not something that is periodically renewed, the inspection regime would identify any potential risks that need addressing together with the timescales. The work carried out to date by NSRI and BGS provides a quantified basis on which to base the regime. An example
inspection regime might consist of: - targeting the type of substation (grid, primary, pole-mounted secondary, ground-mounted secondary or LV) representing the greatest risk, balancing the likelihood of exceeding earth potential due to climate changes with the number of people (staff and customers) exposed; - refine this population by excluding those which are shielded from direct climate effects (such as indoor substations); - refine this population of substations by targeting those with older earthing installations designed to legacy design standards as a first priority; - further refine this population by targeting those in areas with known poor soil resistivity; - further refine this population by choosing a representative sample size to monitor. ENA Engineering Report 1 May 2011 Page 53 Inspection visits would then consist of re-measuring the resistance of the earthing installation, and would need to pay due regard to the season, and environmental conditions prevailing during the inspection in order to ensure readings can be correctly interpreted. To give a context to this, sampling one percent of UK grid sites with 5-yearly inspections would involve a handful of inspections, and negligible cost. Sampling one percent of LV sites with 5-yearly inspections would involve hundreds of thousands of inspections and incur several millions in operating expenses. It is envisaged that an allowance for both monitoring by inspections, and replacement/upgrading could then be built into future DPCR cycles. # 5.5. Transformers (Risks AR7 and AR8) Transformers are used to transform voltage from one level to another. Within distribution network operator systems the most common transformation steps are 132,000 volts (132kV) to 33kV, from 33kV to 11kV and from 11kV to the low voltage (LV) supplies that feed homes and small businesses. Some other voltage levels are also in more limited use, such as 66kV and 22kV, but the principles remain the same. Transformers basically comprise an iron core with copper or aluminium insulated wire coils wrapped around that, further insulated with a mineral oil and housed in a steel tank, with external connection points to the system. The passage of current through the wire coils ("windings") causes heating, since no wire is a perfect conductor, and the insulating oil plays a major part in conducting that heat away. The larger transformers used to transform down from 132kV, 66kV and 33kV are almost all "ground mounted" and carry large amounts of power, necessitating the use of external radiator banks with pumps and fans to dissipate the heat. The transformers that transform from 11kV down to LV have cooling radiators built into the sides of the tanks. Small capacity units can be mounted on poles ("pole mounted distribution transformers") whilst others, typically feeding estates and semi - urban / urban businesses are slightly larger, ground mounted, and may be situated in an outdoor walled enclosure or within a building or glass reinforced plastic type enclosure. Examples are shown below: Photograph 6 - Examples of 33k / 11kV ground mounted (GM) transformers (two visible in photo) with coolers shown to the left Photograph 7 - A pole mounted distribution transformer with external cooling tubes The load carrying capability of the transformer is primarily dictated by the maximum temperature at which the windings and insulation can be operated without causing damage and an electrical fault. The greater the external ambient temperature the less heating can be permitted from the windings and consequently the rating is reduced. The pattern of demand loading during the day also has an impact. UK distribution network operator transformers have been purchased against British and International Standards extending back to the 1930s (see Appendix 5). These Standards have for many years had associated loading guides that provide a mechanism for assessing different loading levels and load patterns against ambient temperature, such as BS CP 1010 (1975) and most recently BSEN 60076-7. These provide a means of assessing the rating reduction impacts from increased ambient temperatures. Whilst there are innumerable permutations that could be assessed, the objective here is to place some broad scales to the impact of climate change and the impact on continuous rated load represents a reasonable worst case picture, when viewed against the 90% probability levels of the stated emission scenarios. BS CP 1010 provides a relatively straightforward tool and the analysis of a broad range of outputs indicates that 11kV distribution transformers are de-rated by some 1.0% / °C whilst the larger 33kV, 66kV and 132kV transformers that have external cooler banks with fans and pumps are impacted by some 0.7 % / °C Figure 9 - Ranges of % de-ratings across UK based on UKCP09 Table 12 - Ranges of % de-ratings across UK based on UKCP09 | Transformer type / season | 2010-39
M | 2040-69
L | 2040-69
M | 2040-69
H | 2070-99
L | 2070-99
M | 2070-99
H | |---------------------------|-----------------------------|-----------------------------|-------------------------|-----------------------------|-----------------------------|-----------------------------|-------------------------| | 11kV summer | [1.8–
2.9°C]
1.8–2.9% | [2.6–
4.5°C]
2.6-4.5% | [2.8-4.8°C]
2.8-4.8% | [3.3–
5.4°C]
3.3-5.4% | [3.2–
5.3°C]
3.2–5.3% | [4.1–
6.8°C]
4.1-6.8% | [5.0–8.4°C]
5.0-8.0% | | 11kV winter | [1.6-2.3°C]
1.6-2.3% | [2.2–
3.2°C]
2.2–3.2% | [2.4-3.5°C]
2.4-3.5% | [2.5–
3.9°C]
2.5-3.9% | [2.7-4.1°C]
2.7-4.1% | [3.0-
4.8°C]
3.0-4.8% | [3.5–5.8°C]
3.5-5.8% | | 33, 66, 132kV
summer | [1.8–
2.9°C]
1.3–2.0% | [2.6–
4.5°C]
1.8–3.2% | [2.8-4.8°C]
2.0-3.4% | [3.3–
5.4°C]
2.3–3.8% | [3.2–
5.3°C]
2.2–3.7% | [4.1–
6.8°C]
2.9–4.8% | [5.0–8.4°C]
3.5-5.9% | | 33, 66, 132kV
winter | [1.6-2.3°C]
1.1–1.6% | [2.2–
3.2°C]
1.5–2.2% | [2.4-3.5°C]
1.7–2.5% | [2.5–
3.9°C]
1.8–2.7% | [2.7-4.1°C]
1.9–2.9% | [3.0–
4.8°C]
2.1-3.4% | [3.5–5.8°C]
2.5-4.0% | Note: Figures in square brackets denote range of projected temperature increases. Table 13 – UK transformer types and quantities and typical unit costs | Quantities of transformers for UK DNOs as at 31 st March 2010 and replacement costs | | | | | | |--|---------------------------------|-----------------------|--|--|--| | Transformer type | Numbers in service [*] | Replacement Cost £k** | | | | | 11kV pole mounted | 348,647 | 2.9 | | | | | 11kV ground mounted | 231,297 | 3.2 | | | | | 33kV pole mounted | 1,588 | 7.9 | | | | | 33kV ground mounted | 7,699 | 377.9 | | | | | 66kV ground mounted | 612 | 440.2 | | | | | 132kV ground mounted | 1,946 | 1018.7 | | | | #### 5.6. Substations (Risks AR9, AR10, AR11, AR12 and AR13) #### 5.6.1. Introduction The relative importance of different types of substation are indicated in Table 2. Substations are key installations on the transmission and distribution systems and are built with considerable redundancy, as described below, however, transmission and distribution security requirements do not provide for the complete loss of a Grid or Primary substation, and in these circumstances, customers may be without supply until repairs or other work are carried out. Source Ofgem – Aggregated Price Control returns (Table T4) **The Ofgem Electricity Distribution Price Control Review (Final Proposals document 146a/09 Table 17 FP cost) Photograph 8 - 132kV Grid Substation showing main power conductors at high level but control circuits located in cubicles at lower level Photograph 9 - 132kV Grid Substation showing 132kV terminal tower (pylon) and start of 33kV wood pole overhead line. Photograph 10 - Distribution Substation with equipment operating at 11kV and 400/230 volts ### 5.6.2. Typical equipment contained within a substation The types of plant that typically makes up a grid substation include batteries, busbars, metering, relays, switchgear and transformers. Transformers are also considered separately under Section 5.5. The general policy for 132kV system design is to establish substations equipped with duplicate 132kV/lower voltage transformers at practicable and convenient locations in the proposed zones of supply, having regard to current loads and possible future load growth together with environmental aspects. 33kV or 66kV substations are normally located as far as practicable at the centre of demand in the proposed zone of supply, having due regard to present loads and possible future growth, future land use and environmental aspects. Care should be taken when siting substations close to residential property, public amenities or environmentally sensitive areas. Substations are designed to occupy the minimum practicable site area to reduce future maintenance costs, subject to a reasonable provision for future extension and/or replacement of switchboards and transformers, and any planning requirements. Where possible, new substations should not be sited on land which is exposed to the risk of flooding. To establish whether a proposed substation premises is at risk from flooding and the potential scale of a flood event, a flood risk assessment should be carried out in line with risk based on PPS 25⁷ in England, TAN 15⁸ in Wales and SPP 7⁹ in Scotland as detailed in ETR 138. Where it is necessary to site a substation on low-lying land, the site may need to be elevated or protected. Photograph 11 - An electricity substation protected by flood barriers in the 2007 floods in the North East of England Distribution Licence Condition 9 required DNOs to comply with a distribution code which 'is designed so as to permit the development, maintenance, and operation of an efficient, coordinated and economical system for the distribution of electricity'. The
adoption of a standard range of plant and equipment for use on the 132kV system helps to achieve this requirement by bringing economies of scale and helps to manage network risks by facilitating the interchangeability of plant under emergency situations. Switchgear will be to the standard specified in ENA TS 41-37 – switchgear for use on 66kV to 132kV Distribution Systems, or ENA TS 41-36 – distribution switchgear for use up to 36kV (cable and overhead conductor connected) which in turn specify that switchgear will be to the standard specified by IEC 60694 – common specifications for high voltage switchgear and control gear standards. Details of the normal service conditions expected from switchgear can be found in Appendix 6. The selection of switchgear takes into account the following factors: - Total cost over the lifecycle of the asset, - Risk of catastrophic failure, - Substation security, - Available space, - Environmental pollution and - Future availability of additional units. 7 ⁷ Planning Policy Statement 25 – Development and flood ⁸ Technical Advisory Note 15 ⁹ Scottish Planning Policy Guidance 7 – Planning and flooding ### Substation climate change risks ### Flood Resilience From a flood resilience perspective, the following guidance is given in the ETR 138: - i.) Identify all substations (within scope) that lie within a flood plain using the best available current data from the EA/SEPA; - ii.) Establish the flood risk for each substation to identify predicted flood depth where the flood depth is likely to cause damage to key parts of the substation resulting in the loss of supply to customers; - iii.) For each substation that is deemed 'at risk', identify the flood impact for that particular site including societal impact; - iv.) Establish if the site is to be protected under a flood protection scheme sponsored by an appropriate public authority; - v.) Establish the most appropriate options for protecting the site with estimated costs. These should include: - provision of permanent or temporary barriers - protecting all the site or only key areas - providing a sufficient level of network interconnection - commissioning a replacement substation in an alternative location. - vi.) Propose an appropriate solution based on flood risk and cost/benefit assessment; - vii.) Review information from the EA/SEPA on surface water flooding as the data becomes available. Ideally mitigation measures should be designed to protect against the 1 in 100 (river) or 1 in 200 (sea) for primary substations and 1 in 1000 floods for grid supply points as appropriate to the practical limitations of the site and the outcome of the cost benefit assessment. The floodplain is split into two different areas. These are: - The area that could be affected by flooding, either from rivers or the sea, if there were no flood defences. This area could be flooded: - o from the sea by a flood that has a 0.5% (1 in 200) or greater chance of happening each year, or - o from a river by a flood that has a 1% (1 in 100) or greater chance of happening each year. - The additional extent of an extreme flood from rivers or the sea. These outlying areas are likely to be affected by a major flood, with up to a 0.1% (1 in 1000) chance of occurring each year. The predicted flood level for a substation asset will also need to take into account the uncertainties surrounding climate change. Based on current advice from the EA/SEPA, it is recommended in ETR 138 that the potential flood depth is increased by the following amounts: - i.) Freeboard By 300mm to allow for uncertainties in data modelling; - ii.) Fluvial flooding By 20% on the predicted flood depth to allow for climate change impacts; - Note: Current EA guidance is to allow for a 20% increase in river flows and model the consequent increase in flood height. If modelling is not carried out EA recommend adding an additional 300mm over and above the 300 mm freeboard allowance. - iii.) Sea Level Increase by the corresponding amount in the table for climate change impact for the lifetime of the assets, nominally 60 years. Table 14 - Defra Flood and Coastal Defence Appraisal Guidance, FCDPAG3 (Economic Appraisal, Supplementary note to operating authorities – Climate Change Impacts) | Region | Net sea level rise (mm/yr) | | | | | |--|----------------------------|------------|------------|------------|--| | Region | 1990- 2025 | 2025- 2055 | 2055- 2085 | 2085- 2115 | | | East of England, East Midlands,
London, SE England (south of
Flamborough Head) | 4.0 | 8.5 | 12.0 | 15.0 | | | South West & Wales | 3.5 | 8.0 | 11.5 | 14.5 | | | NW England, NE England,
Scotland (north of Flamborough
Head) | 2.5 | 7.0 | 10.0 | 13.0 | | At present, data is issued by EA solely for the current flood risks. It is anticipated that predictions on future risks including pluvial flooding, will be available soon and it will be necessary to re-assess flood mitigation plans and expenditure in line with this data as and when it becomes available. In addition, the second generation of National Shoreline Management Plans are now available and these include projections for coastal erosion. The information from these plans will also be considered in the assessment of flood risks. For existing major substation sites where there are no short term plans for substantial asset replacement work, one of the following options may be adopted and be considered bearing in mind the cost benefit assessment of the design. 1 Construction of a subterranean "wall" around the perimeter of the substation site (including compound and buildings, extending above ground (e.g. concrete, sheet piling). Photograph 12 - Perimeter wall 2 Construction of a waterproof wall within the site to protect critical assets. This option may be adopted where only specific assets are at risk and may be used in conjunction with option 3. Any of the following measures may be used where the flood height is not great, usually 300mm or less: - Installation of flood protection to door openings; - · Raising ventilation holes; - Raising walls; and - Sealing cable troughs. - 3 Deployment of a temporary flood barrier around the perimeter of the substation site (or specific assets). - 4 Relocation of the substation. Removes flood risk. - Where a substation has been identified for asset replacement, an assessment of the flood risk shall be undertaken. Should this analysis result in the substation being identified as being at risk, the substation may be built at an elevated level. Standard designs are available for indoor distribution substations elevated at 600mm and 1200mm above ground level. Table 15 - Flood resilience levels | Resilience levels without relying on temporary flood protection measures | | | | | | |--|---------|--|--|--|--| | Level of flooding that may occur within a 1:1,000 year flood contour | Level 1 | | | | | | Level of flooding that may occur within a 1:100 year fluvial flood contour (1:200 in Scotland) and within the 1:200 contour for sea flooding throughout the UK | Level 2 | | | | | | Other flood protection measures (not meeting Level 1 or Level 2 above) including provision of limited alternative supplies. | Level 3 | | | | | The cost of providing resilience will vary greatly between different sites, depending on the flood depth, work needed to protect the site, the availability of alternative sources of supply if a site is lost and the degree of protection offered by other schemes such as those defences provided by the EA or Scottish local authorities. ENA Engineering Report 1 May 2011 Page 63 ETR 138 states that network operators should carry out cost/benefit assessments for each substation at risk in order to determine which resilience level is appropriate in any given case. This will include consideration of customers' "willingness to pay" for this type of network resilience. The cost/benefit assessments will take into account the societal aspects identified in ETR 138 and other reviews into recent floods, including the Pitt Review, as well as the more usual considerations of reducing customer supply losses and protecting assets. For grid substations the target level of resilience should be Level 1 unless the company determines through its cost/benefit analysis that Level 2 resilience is appropriate in any given case. If in exceptional circumstances, a company determines that neither Level 1 nor Level 2 resilience is appropriate for a grid substation, it will provide such level of resilience as is reasonable practicable in the circumstances. If a company is uncertain about the level of resilience, it may consider consulting with Ofgem, DECC and the relevant flood protection authority as a means of resolving such uncertainty. Key substations that form part of the interconnected UK transmission system and are essential for the maintenance of secure supplies should be considered in the same way as grid substations. For primary substations the target level of resilience should be Level 2 unless the company determines through its cost/benefit analysis that Level 3 resilience is appropriate in any given case. However, where substantial additional protection can be provided for a primary substation at marginal additional cost e.g. protection increased from Level 2 to Level 1, then companies should consider providing this enhanced level of protection. Dam Inundation was out of scope for ETR 138 because inundation plans were not available. These plans have subsequently been released and are available through the Local Resilience Forums and companies are considering what additional measures may be necessary to prevent/limit potential damage and ensure that emergency plans provide a framework for recovering from this
type of incident. At present this is shown on the Risk Matrix as very unlikely but with potentially extreme consequences Companies will take into account the latest information provided by EA and SEPA on the potential affect of climate change on the likelihood and impact of dam inundation. ### 5.7. Lightning resilience (Risk AR14) The Met Office project described in Section 4.1.2 details likely changes in lightning activity which includes a projected change in future UK lightning faults by the 2080s ranging from a decrease of 3% to an increase of 75% with a regional variation in the estimates. Lightning storms have the potential to cause damage, latent damage, flashovers and transient interruptions to electricity transmission and distribution networks, for example damage to insulators, bushings and cables. The effects of lightning can be minimised by including both shielding measures and suppression devices into electricity networks. Metallically enclosed ground mounted substations have inherent protection from direct lightning strikes, but they can be affected by nearby strikes. These can cause surges in connected circuits, especially overhead lines, either by a direct strike or by inducing current in these lines. To guard against these effects it is normal to install shield wires on grid circuits supported by metal structures to provide a preferential path thereby reducing the probability of flashovers to the phase conductors. Unearthed circuits mounted on wooden poles, form the majority of overhead high-voltage circuits and their physical properties also provides a degree of intrinsic electrical isolation from earth (which reduces the likelihood of a direct strike), but there are frequent earthed positions which tend to be associated with more vulnerable equipment such as overhead/cable interfaces and pole mounted plant/ transformers. At these positions surge arresters are used to protect the equipment by clamping the voltage below values that can cause damage. When flashovers caused by lightning occur, they normally result in high levels of power follow through current, which causes circuit protection to operate. In order to minimise the effects to customers, autorecloser devices are installed on the network to rapidly reconnect circuits automatically after such an event. Increased lightning activity could result in a number of network risks including:- - a) Reduction in lifetime of surge arrestors due to increased exposure to lightning strikes. - b) Requirement to upgrade or modify lightning protection to maintain system performance. - c) Requirement to extend lightning protection to cover assets that are not currently protected resulting in a further need for investment. - d) Reduced network performance with increased likelihood of supply interruptions in spite of improved lightning protection. In view of the wide range of likely change in lightning activity and the uncertainty of the overall change in lightning risk, both of these factors will require further investigation to provide companies with sufficient evidence to support firm recommendations on adaptation requirements. ### 5.8. Other impacts The above sections have identified a range of risks which impact on the network assets (premises and processes) that form the key to the UK electricity network infrastructure. There are a range of other potential impacts that have been considered and are described below – **Markets** It is likely that climate change itself will bring about a greater take-up of air conditioning load with increased penetration into the domestic sector. However, against this increased demand there are opposing drivers through new building standards and other government initiatives on thermal efficiency together with EU Energy Using Products Directives. Of greater impact are climate change mitigation actions in support of the low carbon economy, previously mentioned in the foreword and described more fully in Section 6.1 below. **Finance** The sector is financed through price control mechanisms administered by Ofgem. It will be necessary for the industry to agree with Ofgem and DECC the approach, funding and timescales for adaptation. This is described more fully in Section 8.1 below. **Logistics** The industry is not reliant upon day by day supply of raw material in the same manner, for example as a coal fired power station. However, it does require supplies of new equipment to install new connections for customers, to build new network extensions or enhance existing infrastructure to meet new demand and to replace old or faulted equipment. These products are increasingly drawn from a European and global marketplace sometimes involving significant shipping distances. Network operators already consider stock holding and replenishment time risks as part of resilience planning and have been subject to review by the former DTI and BERR. Only the largest items cannot be air-freighted if the need arose and it would require simultaneous disruption of road / sea and air transport to have major effect. The industry staff home life would be subject to the same disruption as the wider public in the event of major water or food shortages. (National Risk Register H49 H50) **People** In the event of significant levels of absence due to health/heat impacts, the industry would re-deploy staff from longer term work, onto fault fixing, and then curtail planned work. The plans already prepared for pandemic flu serve as a model for this approach. In addition staff may be affected by disruption to normal travel arrangements caused by extreme events such as flooding or heat waves and there will be dependencies with the transport sector including the Highways Agency and rail and air transport companies. ### National risk register elements The national risk register includes some 50 referenced risks, some of which have a potential relationship with climate change – **H17 Storms and Gales –** discussed above under the relevant asset. **H18 Low temperatures and Heavy Snow -** Company emergency planning, described under 3.15 above, includes for response to faults. The difficulties in gaining access to fault locations are partly mitigated by widespread use of 4 wheel drive vehicles and the availability of a number of helicopters under direct ownership and control of network operators. It is recognised that road access by four wheel drive vehicles can be inhibited by other vehicles blocking roads. However, the climate change forecasts indicate a reduction rather than an increase in this risk. HL18, 19 and 20 relate to flooding - please see Section 5.5 above. **HL21 Land movement –** this is referenced in the document as a potential threat to underground cables and structure due to ground drying. **H23 & H24 Pandemic and emerging diseases –** please see comment above under "people" **H25 Animal disease** – Climate change is likely to result in a migration of infectious animal diseases such as Blue Tongue into the UK. Such diseases may well lead to bars on access to areas of agricultural land, in the same manner as for foot and mouth disease (FMD). The industry has experience of FMD access restrictions, and established processes and protocols with Defra. Such restrictions result in a cessation of planned works and inhibit response times when correcting faults on the network. Consequently these have greatest impact when an FMD type access restriction coincides with a period of adverse weather such as a severe wind or lightning storm. **H31 & H38 Constraint on supply of fuel –** This could arise in the event of transport restriction caused by extreme weather. The industry established a range of mitigation actions, including self storage, in the light of past fuel emergencies, and are identified by Government as a priority user class **H41 & H45 – Technical failure –** E3C oversees plans that are in place for major emergencies including recovery from a total failure of the grid system known as "Black Start". **H48 Heat wave** – Impacts on assets are described in relevant sections above. For impacts on staff absence please see "people" H23 / H24 above. There are further impacts relating to the ability of staff to work at normal rate and also regarding the practicality of wearing current designs of personal protective equipment (PPE), such as flame retardant overalls for cable jointing or flame retardant clothing, and insulating gauntlets for "hot- glove" working on live 11,000 volt overhead lines as indicated in the picture below. If staff were unable to work with the current PPE it would mean that fault repairs would be delayed until the heat had reduced (e.g. night time) and planned work delayed. It will be necessary to study the PPE aspect of climate change and seek, if necessary, an evolution to PPE more suited to hot environments (noting that hot glove work is already undertaken in hot climates). Photograph 13 – Hot glove live line working – personal protective clothing and equipment ### 5.9. Strategic risks from climate change on a likelihood/consequence matrix The strategic risks from climate change identified above are shown on a likelihood/consequence matrix in Table 4. ### 5.10. Identified short and long term impacts of climate change The identified impacts over time are shown in Appendix 8 which also quantifies the likelihood, consequences and risks for the three time periods to the end 2020, 2050 and 2080. # 5.11. High priority climate related risks and why (level of impact to business, likelihood, costs and timescales) High priority risks are not necessarily ones that score high or very high in the overall risk assessment, but those where there is a need to take action in the short term as indicated in Appendix 8. Present experience identifies flooding as the highest priority risk. Flooding resilience is covered in this report in Section 5.5 and has been the subject of a separate study detailed in ENA ETR 138. This issue has received particular
attention due to the increased incidence of flooding affecting electricity substations, notably in 2005 and 2007. Companies have identified substations at risk and agreed with Ofgem a programme of work for the next five years with the balance of sites planned for action in the following five year programme. Companies can provide an indication of the locations affected. Although not shown on the matrix as a major risk, vegetation management is already a cause for concern and is currently subject to a five year programme to improve network resilience under the ESQCR. ### 5.12. Opportunities due to the effects of climate change which can be exploited A European project addressing the measurement and forecasting of atmospheric icing on overhead line structures is mentioned in Sections 3.2.1 and 5.1.3 (COST 727). The outcome of this study is likely to lead to a better understanding of potential ice loadings and the ability to design more cost effective line structures. In addition, climate change is likely to result in fewer and less severe icing events which should also allow a reduction in design strengths with subsequent cost savings. ### 6. Actions proposed to address risks ### 6.1. Adaptation actions for the top priority risks with timescales ### Overhead line designs Section 5.1 above identified the extent of the impact on overhead line ratings caused by increasing ambient temperatures; the most onerous impacts being on wood pole types having design operating temperatures of 50°C. An increase of 5°C, for example, in the design operating temperature to 55°C would mean that a proportion of existing spans of overhead line would sag below required statutory minimum height and would require replacement of the overhead line supports (mainly wood poles) with taller versions. Given that the normal life of a wood pole support is of the order of 60 years, those that are being installed now, either as part of normal pole replacement or in new lines, will face the range of climate impacts identified in the period out to the 2080s. If the industry were to wait until the need arose to change individual poles because of increased operating temperatures, it would follow that the timing would be unlikely to naturally occur coincident with the need to replace the pole due to deterioration. An assessment of the age profile of the present pole stock is thus warranted and is presented below. This shows (2008 base year) that by 2020, some 53% of poles will be at or approaching 60 year nominal life and are more likely to be approaching need for replacement. The marginal cost of installing a 0.5m taller pole at time of replacement is around £20 (stout) whereas the Ofgem (DPCR5) total unit cost of replacing a single pole is some £1,800 (see 5.1 above). ENA member companies thus propose to engage in discussion with Ofgem and DECC with a view to agreeing revised design standards to take effect from the next price control review, starting in 2015. | Table 16 | Table 16 - Number of supports by age profile as at 31/03/2008 | | | | | | | | |----------------------------|---|--------|---------|---------|---------|---------|---------|-----------| | Age | 70+ | 60+ | 50+ | 40+ | 30+ | 20+ | Unknown | Total | | Asset categories | | | | | | | | | | LV Network Overhead lines | | | | | | | | | | LV Supports | 54,881 | 77,584 | 369,576 | 408,361 | 224,720 | 187,886 | 387,918 | 1,710,926 | | HV Network Overhead lines | | | | | | | | | | 6.6/11 kV Supports | 40,079 | 56,919 | 407,397 | 623,604 | 279,878 | 191,082 | 449,925 | 2,048,884 | | 20kV Supports | 2,665 | 3,073 | 15,901 | 16,860 | 7,299 | 6,437 | 12,220 | 64,455 | | EHV Network Overhead lines | | | | | | | | | | 33kV Pole | 7,110 | 16,613 | 51,477 | 85,731 | 44,786 | 25,389 | 66,985 | 298,091 | | 33kV Tower | 2,888 | 1,168 | 2,639 | 2,417 | 1,631 | 324 | 504 | 11,571 | | 66kV Pole | 460 | 1,245 | 8,931 | 9,449 | 3,101 | 1,505 | 5,740 | 30,431 | | 66kV Tower | 428 | 94 | 1,105 | 1,172 | 78 | 26 | 79 | 2,982 | | 132kV Network | | | | | | | | | | Overhead lines - Supports | | | | | | | | | | 132kV Pole | 2 | 68 | 1,015 | 1,647 | 671 | 587 | 3,749 | 7,739 | | 132kV Tower | 4,927 | 1,849 | 8,492 | 9,247 | 3,832 | 1,784 | 3,307 | 33,438 | ### 6.2. Implementation of adaptation actions It is expected that adaptation will be incorporated in companies' long term investment programmes as indicated in Section 6.4. One important aspect is to ensure that new and replacement plant is appropriately specified to take account of possible climate change effects over the lifetime of the equipment. Accordingly it is proposed to review critical industry standards and this is covered in Section 6.3. It is expected that flooding adaptation work for current known threats including climate change will be completed over the next ten years. ### 6.3. Industry specifications and guidance It is proposed that ENA should carry out a focussed review of those Engineering Documents that are likely to be significantly affected by climate change (e.g. overhead line ratings), identifying any standards that will require updating. On completion of this review, the ENA Committee governing these standards will agree any programme that may be necessary to amend the standards, prioritising those that require the greatest change, affect assets with long lives and where the expense of modifying the future installed population is greatest. Any programme should use the most appropriate climate data available, where necessary commissioning research to understand potential impacts and probabilities. It would need to take account of developments in British, European and International Standards. Depending on relationships with national and international standards, any programme should preferably be targeted to progress at a rate that will allow the implication of any changes to be considered by member companies in their company specific documents before the next price review. ### 6.4. Cost estimate for adaptation measures and benefits anticipated | Table 17 - INDICATIVE IMPACT COST OF DE-RATING OF ASSETS DUE TO CLIMATE CHANGE 2070-2099 High emission 90% probability | | | | | | | | |--|--------------|-------------------------------|----------------------|---------------------------|------------------|-------------------|----------------------------| | | | Risk Factors | | Mitigation | าร | Indicative total | Indicative annual impact - | | Asset categories | National qty | Indicative max
% de-rating | Unit cost
£k/unit | Assumed % length impacted | Notional
life | impact to 2080 £m | straight line model £m | | Overhead lines cct/km | | | | | | | | | LV rebuild | 64873 | 14 | 28.4 | 10 | 50 | 26 | 0.516 | | HV rebuild | 168953 | 14 | 33.5 | 10 | 50 | 79 | 1.585 | | EHV pole | 28882 | 14 | 42 | 100 | 50 | 170 | 3.397 | | EHV tower | 3253 | 14 | 431 | 100 | 80 | 196 | 2.454 | | 132kV pole | 1773 | 5 | 79 | 100 | 50 | 7 | 0.140 | | 132kV tower | 14696 | 5 | 1162 | 100 | 80 | 854 | 10.673 | | Underground cables | | | | | | | | | LV | 328037 | 5 | 98.4 | 10 | 80 | 161 | 2.017 | | HV | 153883 | 6.6 | 82.9 | 10 | 80 | 84 | 1.052 | | EHV | 21184 | 6.5 | 256.8 | 100 | 80 | 354 | 4.420 | | 132kV | 3188 | 4.9 | 1047 | 100 | 80 | 164 | 2.044 | | Transformers | | | | | | | | | HV/LV ground mount | 232968 | 8 | 13.2 | 100 | 50 | 246 | 4.920 | | HV/LV pole mount | 355962 | 8 | 2.9 | 100 | 40 | 83 | 2.065 | | EHV/HV | 4587 | 5.9 | 386 | 100 | 50 | 105 | 2.090 | | 132kV/HV | 1946 | 5.9 | 1018 | 100 | 50 | 117 | 2.338 | | Total | | | | | | 2645 | 40 | #### Note: Quantities from aggregated Ofgem DPCR5 FBPQ Table T4 submissions (HV incl 20kV, EHV incl. 66kV) Costs from tables 17 and 20 of Ofgem DPCR5 - Document 146a/09 issued 7 Dec 2009 Overhead rebuild lengths for wood pole incl conductor and poles - taken from table 20 as above Overhead rebuild cost for steel tower - costs from Table 17 and assumed 10 supports per km EHV transformer cost is weighted average cost 33 and 66kV on quantity addition embedded in cell D22 Indicative total impact to 2080 equals National Quantity x Indicative De-rating x Unit Cost x Percentage Length or Numbers Impacted [%] length impacted is less for LV and HV due to tapering of load down length [%] indicative max de-rating from draft ENA report Section 2 of this report made reference to the evolution to "smart" electricity networks required to facilitate the evolution to a low carbon economy. Further background is included in Section 7.1 below. The consequence of such transition is that climate change adaptation will be enmeshed within other work to replace existing assets and in building new networks. The costs of adaptation then predominantly emerge as marginal costs incurred at the time of the other works, rather than an outright adaptation only cost. An indicative scale of cost of adaptation impact has been calculated using Ofgem data on asset quantities and unit costs, and applying a "worst case" climate de-rating impact for the 2070-2099 high emission scenario 90% probability model, and using a likely pessimistic prorata cost / rating assumption. That indicates a total UK cost, based on the extent of the present day network and current costs, of some £2.6 billion over some 60 years. Detailed modelling would be required matching individual asset age profiles and regionality to arrive at annualised spend, but on a simplistic straight line approach it is of the order of £ 40m p.a nationally. The companies stress that these figures are only presented to give an indication of scale; as stated above they do not represent detailed analysis, and adaptation would be interwoven with other investment and timing decisions. #### 6.5. Estimate of level of risk reduction and timescales Because it is planned to incorporate adaptation measures in normal investment
programmes and due to the scale of future planned investment in electricity transmission and distribution networks, it is considered that adaptation measures can effectively be built into the normal programme of work and covered by companies overall risk management processes. # 7. Embedding the management of climate change risks in Transmission and Distribution Network Operators ### 7.1. Smart Grids The move to a low carbon economy introduces new stresses on electricity networks arising from increased electricity demand from electric vehicles and electrification of heating and cooling with heat pumps and air conditioning loads. Work by the ENA and Imperial College has pointed to a doubling of unconstrained electricity demand well within the timescales out to 2080 covered by this climate change adaptation report. To avoid the need to massively enhance existing electricity networks to handle this doubling of demand, it is necessary to build monitoring and intelligence into the networks to take automated actions. New and enhanced buildings will have better thermal insulation, meaning that the need for heating and cooling to be "on" for long periods will be diminished, providing the capability to share out and time shift the incidence of demand. In the case of electric vehicles there will also be a need to undertake the same measures though the degree to which time displacement is available will differ between work / shopping and home charging locations. The ENA / Imperial work indicates that the unconstrained 100% increase in demand can be limited to some 30% through the use of smart network technology. This 70% reduction in impact through smart network technology can also assist in responding to the impact of climate change on de-rating of some network assets. Consequently the use of smart network technology provides an important related adaptation measure, though the prime rationale is facilitating the low carbon economy not adaptation. The need for and development of smart networks will be overseen by DECC and Ofgem and as such will be captured by existing oversight, monitoring and reporting mechanisms. ### 8. Uncertainties and assumptions # 8.1. Main uncertainties in the evidence, approach and method used in the adaptation programme and in the operation of the companies Companies' adaptation plans are based on the evidence provided by UKCP09 and this information covers three scenarios for future climate change which are projections and may be subject to error. Climate change thresholds that started to trigger extreme weather events such as flooding or storms could be critical for network operators. As indicated above, experience indicates these events are likely to cause most disruption to society, with the effects of flooding and ice storms leading to potentially very long repair and restoration times. As indicated in Section 3, at present UKCP09 does not provide any particular guidance on the potential effects of climate change on extreme weather threats. Electricity network companies will continue to maintain close contact with the Met Office and other agencies to ensure that the most up to date information is available regarding these potential threats which will enable companies to plan ahead and develop adaptation schemes if this becomes necessary. A combination of hot periods in the summer combined with very low wind speeds could accelerate the de-rating of overhead lines. Also, very long droughts with resultant soil drying could cause an increase in soil thermal resistivities resulting in further underground cable derating. Increased incidents of severe lightning or wind storms could cause additional damage to overhead lines. Until recently estimates were made for increases in flood heights due to a potential increase in river flows of 20%. However, EA are now making available information that models the increase in flood height as a result of increased river flows which should remove some of the uncertainty. An increased likelihood of short term (severe weather) and long term climate effects may require additional maintenance and emergency management with consequent upward pressure on staffing and skill levels. ### 8.2. Assumptions made when devising the programme for adaptation The base programme makes the following assumptions until 2099: - Government regulation will continue to operate without major change. - Appropriate financing will be in place. - Customers will continue to have similar requirements. - Demand for electricity will continue to grow at historic rates. - Electricity transmission and distribution systems will continue to function in a similar manner to the present day. - Companies will be able to recruit, train and retain the required levels of staff. - Suppliers and contractors will continue to provide services on a similar basis. - Installation, access and maintenance in relation to network cables, overhead lines plant and equipment will remain unchanged. - There will be no major changes to population numbers or distribution across the country. ### 9. Barriers to adaptation and interdependencies ### 9.1. Barriers to implementing companies' adaptation programmes Electricity network companies are subject to regular price control reviews of their investment programmes by Ofgem in a process described more fully in Section 10.1 below. Those reviews focus strongly on investment programmes, cost efficiency and performance. Whilst not currently identified as a barrier, the *potential* exists for a conflict of drivers between cost reduction and early pursuit of adaptation measures, given the long lifetimes of electricity network assets, ranging from some 40-50 years for transformers 50 years + for wood pole overhead lines and upwards of 80 years for underground cables and steel tower ("pylon") overhead lines. From an adaptation viewpoint there might be a case for upsizing ratings or allowing more ground clearance on overhead lines to take account of future ambient temperature rises, but such measures would not pass a net present value investment test. If however, the industry, together with the regulator, took the view that it was appropriate to agree relatively modest changes in design standards now, then the net present value issue could be overcome. This type of question is also likely to arise in other regulated sectors. The periodic price control reviews have an extremely strong influence on capital investment programmes and operational expenditure. Companies will work with Ofgem to achieve a shared view of the potential requirements for adaptation and the associated expenditure. However, companies' plans for adaptation will be dependent on obtaining Ofgem's view of the associated financial investment plans. Electricity networks are extensive interconnected systems that can only be modified or uprated through a systematic process that is likely to require a considerable period of time. Piecemeal upgrades are unlikely to be cost effective or successful. ### 9.2. Addressing the barriers identified Network operators will seek to resolve the above potential barriers by jointly examining with Ofgem the current assessment of impacts and adaption options, with the aim of agreeing a way forward that will be considered as part of the next round of price control reviews starting in 2015. These discussions will be facilitated by ENA and DECC will be invited to consider national priorities. ### 9.3. Interdependencies including the stakeholders A parallel challenge for electricity network companies over the coming decades concerns the change to "Smart Networks". This initiative is planned to support the requirement that renewable distributed generation and low carbon loads can be connected to networks in large numbers, as part of the programme to meet the 2020/2050 carbon reduction targets, whilst still maintaining supplies to customers in a cost effective and reliable manner. This will mean that networks are likely to undergo considerable change at the same time that work may need to be carried out to improve resilience to climate change impacts. The scale of the change to "Smart Networks" is likely to be very large entailing the re-design and re-building of many circuits and substations. The resultant upgrade may be far larger than required to accommodate potential adaptation requirements and it will be necessary to understand these two requirements fully before companies submit their financial plans to Ofgem. Therefore, although it is essential to research fully the potential effects of climate change in order to understand the possible impacts and mitigations, it is probable that the scale of any network upgrades will be dictated by the drive to low carbon networks. ### 10. Monitoring and evaluation Some of the issues in this chapter will be company specific and it is expected that companies will establish their own individual monitoring processes and these will be monitored by Ofgem in future years via established processes. ### 10.1. Monitoring the adaptation programme Electricity distribution and transmission companies are licensed and regulated by Ofgem under the powers of The Electricity Act (1989 - as amended). The Act spans a wide range of topics, but of particular relevance are aspects that encompass price control, duties on companies to comply with legislation and on Ofgem to ensure that companies are adequately funded to discharge their duties. Another key piece of legislation is the ESQCR, which places duties on network companies to ensure their equipment is sufficient for the purposes for and the circumstances in which it is used and constructed, installed, protected (both electrically and mechanically), used and maintained as to prevent danger, interference with or interruption of supply, so far as is reasonably practicable. Companies are thus already under an ongoing obligation to ensure the adequacy of their equipment against current "normal" conditions. Ofgem currently
undertakes periodic price control reviews of transmission and distribution companies, looking in depth at their investment plans, performance and cost efficiency, and benchmarking network operators against each other. This is supplemented by an annual regulatory reporting process designed to track progress against these plans. In exceptional circumstances, such as arising from costs imposed by newly introduced legislation within a price control period, Ofgem may agree a "re-opener" against those related areas of cost. The existing five year price control frequency is currently under review. The industry approach to identification, risk assessment and development of mitigation plans for major substations at risk of flooding, provides an illustration of the way in which joint work on adaptation could be pursued. As described above, a Task Group was established under Energy Networks Association, with membership from each of the member electricity network companies together with EA, SEPA, Met Office, DECC and Ofgem. A report was prepared by the group and submitted to the Energy Minister. That report has formed the basis of common standard submissions to Ofgem in the recent price control review and will be regarded by DECC as the industry standard, if necessary by referencing it in the guidance to the ESQCR in a similar manner to other ENA documents. Monitoring of progress on adaptation by Ofgem can then be facilitated via a common approach through the existing five yearly price control and the annual regulatory reporting processes which is companies' preferred approach. This process will continue to use latest information as it becomes available. ## 10.2. Monitoring the thresholds above which climate change impacts will pose a risk to the company and incorporation into future risk assessments The thresholds at which climate change will start to present a risk to companies is well understood for a number of impacts, e.g. increased temperature causing a reduction in equipment ratings. In these areas it will be necessary to monitor actual climate change effects and updated projections in order to ensure that planned adaptation activity is sufficient and timely. In other areas of activity such as earthing systems and vegetation growth further work will be undertaken to identify the thresholds at which action needs to be taken. In addition, research into the impact of air conditioning loads, low carbon loads/generation and smart networks is already in hand and climate change impacts will be factored into this work to ensure that the thresholds are fully understood and appropriate action factored into programmes of work. Low carbon networks and smart grids are an international issue and network operators will be engaged in British, European and International Standards work to ensure standards are developed for the new networks and these will need to take account of the thresholds for climate change impacts on an international scale. ### 10.3. Monitoring the residual risks of impacts from climate change in the company Each electricity network company has its own approach to the monitoring of residual risk, which will focus on particular company issues and include reference to management through the company risk register and regular review. ### 10.4. Ensuring a flexible response Companies will continue to work with ENA to review the latest information on climate change projections, including actual recorded climate change outcomes, and update action plans as necessary. This will include maintaining and developing the relationship with holders of key information including Defra, EA and the Met Office. Companies will also maintain a dialogue with DECC and Ofgem as part of annual regulatory reporting and the periodic price control process. The general position regarding companies' resilience will be continually reviewed via the DECC, E3C bi-monthly meetings and the follow up work in the companies via ENA working groups. Photographs of Electricity Substations showing overhead line and underground cable connections Photograph 14 - 400kV Grid Substation showing 400kV terminal tower (pylon) Photograph 15 - 132kV Grid Substation showing 132kV terminal tower (pylon) and start of 33kV wood pole overhead line Photograph 16 - Primary Substation showing equipment operating at 33kV and 11k Photograph 17 - Distribution Substation with equipment operating at 11kV and 400/230 volts Photograph 18 - 132kV Grid Substation showing main power conductors at high level but control circuits located in cubicles at lower level ### **Transmission and Distribution System Information** | Trans | smission and | Distribution S | ystem Inform | ation | | | |-------------------|------------------------|----------------------------|-----------------------|--------------------------|--|--| | System
Voltage | Overhead
Lines (km) | Underground
Cables (km) | Transformers (No. of) | | | | | | | Transmission | | | | | | 400kV | 11,643 | 195 | 3 | 63 | | | | 275kV | 5,766 | 498 | 4 | 41 | | | | 132kV | 5,254 | 216 | 290 | | | | | DC link | | 327 | NA | | | | | Distribution | | | | | | | | System
Voltage | Overhead
Lines (km) | Underground
Cables (km) | Switchgear
(No of) | Transformers
(No. of) | | | | 132kV Tower | 14,697 | 2.404 | 0.500 | 4.040 | | | | 132kV Pole | 1,774 | 3,191 | 2,588 | 1,946 | | | | 33kV Tower | 2,563 | 00.001 | 20.200 | 12.262 | | | | 33kV Pole | 26,557 | 90,991 | 39,308 | 13,262 | | | | 20kV | 5,094 | 1,659 | 9,496 | 8,986 | | | | 11kV and 6.6kV | 163,868 | 152,224 | 567,399 | 579,944 | | | | LV | 64,874 | 311,237 | 1,112,000 | | | | Met Office report published January 2008 EP2 — the impact of climate change on the UK energy industry ### **Executive summary** This project has engaged the Met Office – a world leading authority on climate science. In conjunction with key energy players, it has developed practical ways to respond to the challenge of climate change in the areas of renewable, conventional and nuclear generation, transmission and distribution network planning, and energy trading and forecasting. The regulator, Ofgem and the Department for Business, Enterprise & Regulatory Reform (BERR) have been kept informed and advised of the challenges that may need to be addressed. It is hoped their involvement in this project will maximise the chances of influencing future price review decisions. This has been a year-long project, directed by experts within the industry and supported by the Met Office, which has been delivered on time, to budget and to specification. ### Background This was an industry-funded project involving 11 UK energy companies focussing on the priorities identified by an earlier scoping study. It has been a groundbreaking initiative that has brought climate science closer to business applications; this is the first project sponsored by an entire sector to review the specific impacts of climate change on their industry. Supported by climate scientists, experts from the industry worked together to understand their precise requirements and developed practical applications and business strategies for a changing world. ### The project has: - Developed innovative new techniques that apply climate models to energy applications so that the industry is better placed to adapt to climate change. - Investigated future wind resource, enabling the industry to understand the continued uncertainty of future wind power. This will assist risk management and investment decisions. - Modelled future soil conditions and their impact on cables so that companies can understand the cost and benefits of installing cables for a more resilient future network. - Built a tool to enable UK coastal and marine sites of interest to be screened to assess if sea level rise should be considered in more detail. - Investigated how the urban heat island effect may change in the future so that Networks can develop plans for their infrastructure in cities. - Produced guidance to help make best use of public domain information on climate change such as the UKCIP new scenarios of climate change (UKCIP08). - UKCIP08 will enhance regional detail and will be available in November 2008. - Delivered new site-specific climatologies of temperature, wind speed and solar radiation that account for climate change so that decisions can be based on realistic climate expectations. - Examined the relationship between historic weather patterns and network fault performance with a view to developing a tool to predict future network resilience. ### The project has found that because of climate change: - With a few exceptions, such as the thermal ratings of equipment and apparatus, there is currently no evidence to support adjusting network design standards. For example existing design standards for overhead line conductors do not require change. - The risk profile for transformers will be affected. Design thresholds of temperature will be exceeded more often and there will be more hot nights in cities. - Soil conditions will change; higher temperatures and seasonal differences in soil moisture are expected. Future conditions could be included in cable rating studies by increasing average summer soil temperatures in the models by approximately 0.5°C per decade. - The output of thermal power stations (and in particular combined cycle gas turbines) could be suppressed with higher air temperature meaning lower air density and, in turn, lower mass flow. Conditions at each location should be considered, especially during re-design or new build and, if appropriate, adaptation planned. - Historical climatologies are no longer valid because climate is not stationary. The new climatologies that take account of climate change are already being adopted and will improve demand forecasting and planning out to 10 years ahead. - Wind resource is uncertain and understanding future resource represents a significant challenge. Although we don't yet have the answers, this
project has highlighted possible strategies for improving our knowledge. ### **Next steps** To retain momentum it is planned to establish an energy and climate change industry group facilitated by the Met Office which should meet as necessary to discuss latest innovations and developments in climate science with leading experts. The group would share thoughts and ideas on areas of common interest as companies work to adapt to climate change. | IFI Projects with Climate Change Considerations | | | | | | | |---|-----------------------|-----------------------|--|--|--|--| | Project Title | Project Manager | Project Participants | | | | | | Vegetation Management | ADAS | NG, UKPN, SP, ENW, CN | | | | | | Pluvial Flood Risk Modelling | ADAS | CN | | | | | | Future Network Resilience (ENA) | Met Office | All | | | | | | Dynamic Ratings Project | Met Office | CN | | | | | | Impact of Climate Change on the UK Energy Industry | Met Office | All | | | | | | Urban Heat Island Study | Birmingham University | CN | | | | | | Earthing Information Systems | BGS and NSA | UKPN, CN | | | | | | Flooding Risk Reduction | Mott McDonald | NG | | | | | | Investigation to Network Resilience to Weather Events | EA, Met Office | NG, ENA | | | | | | Flooding Risk Analysis Pluvial Flooding Risks | Total Flood Solutions | NG | | | | | | Flooding Risk and Severe Weather Mitigation
Demountable Flood Barrier Facilitating Work
(Phase 1 and 2) | | NG | | | | | NOTE: NG = National Grid, UKPN = UK Power Networks, ENW = Electricity North West, CN = Central Networks (Now part of Western Power Distribution) ### **Key Design Standards** This appendix provides some background on the most relevant applicable design standards, together with some illustrations relating to the historical usage of older British Standards in a global context. Whilst present day Standards are dominated by those issued by the International Electrotechnical Commission (IEC) and European Norms (EN), it should be recognised that much electricity network infrastructure still in use was designed according to British Standards issued many decades ago. It is thus appropriate to briefly describe the climatic conditions used as the basis for equipment ratings in those old Standards. The UK was a major manufacturing base of electricity network equipment from the 1920s, supplying a global market dominated by a British sphere of influence. Consequently both British Standards and equipment designs were arranged to meet climatic demands covering the Middle East, India, Malaysia, South Africa and Australasia, as evidenced by references to peak ambient temperature requirements of 40°C as far back as 1923. | Standard etc. | Date | Title | Comment on climate content | |---|------|--|--| | BS 116 | 1923 | Oil immersed switches and circuit breakers for a.c. circuits | Ambient air temperature up to 40°C | | Electricity Supply Acts
1882 to 1936 | 1931 | Electricity Commissioners 1931 design requirements | | | BS 171 | 1936 | Electrical performance of transformers for power and lighting | Peak air temperature 40°C,
average over any 24 hour
period not greater than 35°C.
Also refers to tropical 45°C
options | | BS 116 | 1937 | Oil circuit breakers oil switches etc for a.c. circuits | Ambient peak up to 40°C with average over any 24 hour period not greater than 35°C | | BS 137 | 1941 | Insulators of ceramic
material or glass for
overhead lines with
nominal voltages
greater than 1000 V | Lightning withstand, pollution performance and temperature cycling | | BS 1320 | 1946 | High Voltage Overhead
Lines on Wood Poles
for line voltages up to
and incl. 11kV | Design for wind load of 16 lb / sq ft (766 N / m2) with factor of safety. Conductor temperature 22 to 122F | | Standard etc. | Date | Title | Comment on climate content | |----------------------------------|------|---|---| | Electricity Supply Act
ELC 53 | 1947 | Overhead Line
Regulations (differs
from 1931 ELC 53 in ref
to BS 1320) | Lines to withstand
simultaneous 50mph wind
and (57 lb / cu ft) ice load with
factor of safety. Max
conductor temperature 122 F | | BS 116 | 1952 | Oil circuit breakers for a.c. systems | Ambient peak up to 40°C with average over any 24 hour period not greater than 35°C | | BS 171 | 1970 | Power transformers | Not greater than 30°C average air temperature in any one day or average greater than 20°C in one year Lightning withstand | | Statutory Instrument
1355 | 1970 | The Electricity (
Overhead Line)
regulations 1970 | Design for 760 N/m2 wind load for conductors up to 35 sq mm and for 380N /m2 simultaneous with augmented (ice / snow load)for conductors > 35 sq mm | | BS 137 | 1973 | Insulators of ceramic
material or glass for
overhead lines with
nominal voltages
greater than 1000 V | Lightning withstand, pollution performance and temperature cycling | | BS 171 | 1978 | Power transformers | Ambient air not greater than 40°C, not below -25°C outdoor or -5°C indoor, not greater than 30°C average in any one day or more than 20°C average in any one year Lightning withstand | | BS 7354 | 1990 | Design of HV open terminal substations | Wind speed, ice thickness, pollution and lightning withstand | | PD IEC TR 61774 | 1997 | Overhead Lines – Meteorological data for assessing climatic loads – mainly ice models but links to IEC 60826 that includes ref to wind and coincident (work fed into BS EN 50341 and 50423 also COST 727 project on icing) temperature. | Discusses icing models for glaze, rime ice and wet snow. Draws on test span information from Canada, Czech Republic, Germany, Japan, Hungary, Iceland, Norway, UK, USA and Italy | | Standard etc. | Date | Title | Comment on climate content | |------------------|------|--|--| | IEC 60265-1 | 1998 | HV switches for rated voltages 1kV to less than 52kV | | | IEC 60076-1 | 2000 | Power Transformers | Ambient temperature max 40°C minimum -25°C Lightning withstand | | IEC 60694 | 2002 | Common specification
for switchgear and
control gear (
superseded by BS EN
62271-1) | Sets ambient temperatures, pollution etc. E.g. outdoor equipment for -minus 25°C and 10mm ice coating. Also sets lightning overvoltage performance levels The ambient air temperature does not exceed 40°C and its average value, measured over a period of 24 h, does not exceed 35°C | | ANSI/IEEE C37.60 | 2003 | American national standard for overhead line pole mounted, dry vault and submersible automatic circuit reclosers and fault interrupters for a.c. systems | Ambient not greater than 40°C or less than – 30°C | | BS EN 62271 -105 | 2004 | High-voltage alternating current switch-fuse combinations | Links to 60694. The ambient air temperature does not exceed 40°C and its average value, measured over a period of 24 h, does not exceed 35°C. Minimum minus 5°C indoor minus 25°C outdoor | | IEC 60076-7 | 2005 | Loading guide for oil immersed power transformers | Normal service conditions | | BS EN 62271-200 | 2005 | A.C. metal-enclosed
switchgear and
controlgear for rated
voltages above 1kV and
up to and including
52kV- | Links to 60694. The ambient air temperature does not exceed 40°C and its average value, measured over a period of 24 h, does not exceed 35°C. Minimum minus 5°C indoor minus 25°C outdoor. | | Standard etc. | Date | Title | Comment on climate content | |-----------------|------|--|--| | BS EN 50423 | 2005 | Overhead electrical lines 1kV up to and including 45kV | Design standard for new overhead electricity lines < 45kV, covers wind and ice load structural strength of supports, conductors, foundations and factors of safety | | IEC 60947 | 2007 | Low Voltage switchgear and Control Gear | Ambient not greater than 40°C and its average value, measured over a period of 24 h, does not exceed 35°C | | IEC 61462 | 2007 | Composite insulators –
hollow insulators for use
in outdoor and indoor
electrical equipment | | | BS EN 62271-102 | 2007 | High-voltage alternating current disconnectors and earthing switches | Links to 60694 The ambient air temperature does not exceed 40°C and its average value, measured over a period of 24 h, does not exceed 35°C. Minimum minus 5°C indoor minus 25°C outdoor. | | IEC 60137 | 2008 | Insulated bushings fro alternating voltages above 1000 V | Standard for bushings (the external connections into transformers, circuit breakers etc) - covers ambient temperature,
ice accretion | | IEC 60815 | 2008 | Guide for selection of insulation in respect of polluted conditions | | | IEC 60529 | 2009 | Degrees of protection provided by enclosures (IP guide) | Ability to withstand driven rain / immersion etc. | | BS EN 62271-100 | 2009 | High voltage circuit breakers | links to 60694 ambient conditions The ambient air temperature does not exceed 40°C and its average value, measured over a period of 24 h, does not exceed 35°C. Minimum minus 5°C indoor minus 25°C outdoor | | BS EN 61936-1 | | Draft standard on substation design | | | ENA TS 43-40 | | High voltage single circuit lines on wood poles | Design includes ref to maps showing combined wind / ice severity by altitude across UK | ### Appendix 5.1 ### UK Equipment to old design standards in service around the world AEI SWITCHGEAR - TYPE BL BUSHINGS Bushings in Service- 33-kV on Type JB 427 circuit-breakers at Baie Comeau, Canada. 66-kV on Type 0W 407 circuit-breakers at Iver, Buckinghamshire. 132-kV on Type OW409 circuit-breakers at Taaibos, South Africa. Temporary leaflet . Issued by AEI SWITCHGEAR DIVISION Trafford Park, Manchester 17. Code No. 2B An installation of springoperated type-ORT2 switchgear in India Photograph 19 - Rated at 750MVA this Type JB429 oil circuit-breaker is in service on the 66kV system of the Central Electricity Board, Malaya IEC 60694 lays out the normal service conditions expected from switchgear. The following are the service conditions relevant to the climate in which the switchgear operates: Indoor switchgear and controlgear: - The ambient air temperature does not exceed 40°C and its average value, measured over a period of 24 hours, does not exceed 35°C - The minimum ambient air temperature is -5°C for class "minus 5 indoor",-15°C for class "minus 15 indoor" and -25°C for class "minus 25 indoor". - The influence of solar radiation may be neglected - The altitude does not exceed 1,000m - The ambient air is not significantly polluted by dust, smoke, corrosive and/or flammable gases, vapours or salt - The conditions of humidity are as follows: - The average value of the relative humidity, measured over a period of 24 hours, does not exceed 95% - The average value of the water vapour pressure, over a period of 24 hours, does not exceed 2,2kPa - The average value of the relative humidity, over a period of one month, does not exceed 90% - The average value of the water vapour pressure, over a period of one month, does not exceed 1,8kPa. ### Outdoor switchgear and controlgear: - The ambient air temperature does not exceed 40°C and its average value, measured over a period of 24 hours, does not exceed 35°C - The minimum ambient air temperature is -10°C for class "minus 10 outdoor",-25°C for class "minus 25 outdoor" and -40°C for class "minus 40 outdoor". Rapid temperature changes should be taken into account. - Solar radiation up to a level of 1,000 W/m2 (on a clear day at noon) should be considered. - The altitude does not exceed 1,000m - The ambient air may be polluted by dust, smoke, corrosive gas, vapours or salt. The pollution does not exceed the pollution level II medium according to Table 1 of IEC 60815. - The ice coating does not exceed 34m/s (corresponding to 700 Pa on cylindrical surfaces) - Account should be taken of the presence of condensation or precipitation. - Vibration due to causes external to the switchgear and control gear or earth tremors are negligible ### **EXTRACT FROM ENA ENGINEERING TECHNICAL REPORT (ETR) 138** Resilience to Flooding of Grid and Primary Substations | Resilience levels without relying on | temporary flood protection measures | |--|-------------------------------------| | Level of flooding that may occur within a 1:1,000 year flood contour | Level 1 | | Level of flooding that may occur within a 1:100 year fluvial flood contour (1:200 in Scotland) and within the 1:200 contour for sea flooding throughout the UK | Level 2 | | Other flood protection measures (not meeting Level 1or Level 2 above) including provision of limited alternative supplies. | Level 3 | As described in Section 7 above electricity supplies may be made resilient through defending key sites against inundation, contributing to a publicly funded area protection scheme or providing network interconnection so that supplies could be maintained even if key sites are disabled due to flooding. The cost of providing resilience will vary greatly between different sites, depending on the flood depth, work needed to protect the site, the availability of alternative sources of supply if a site is lost and the degree of protection offered by other schemes such as those defences provided by the EA or Scottish local authorities. Network operators should carry out cost/benefit assessments for each substation at risk in order to determine which resilience level is appropriate in any given case. This will include consideration of customers' "willingness to pay" for this type of network resilience. The cost /benefit assessments will take into account the societal aspects identified in this ETR and other reviews into the recent floods, in particular the Pitt Review, as well as the more usual considerations of reducing customer supply losses and protecting assets. For grid substations the target level of resilience should be Level 1 unless the company determines through its cost/benefit analysis that Level 2 resilience is appropriate in any given case. If, in exceptional circumstances, a company determines that neither Level 1 nor Level 2 resilience is appropriate for a grid substation, it will provide such level of resilience as is reasonably practicable in the circumstances. If a company is uncertain about the level of resilience, it may consider consulting with Ofgem, DECC and the relevant flood protection authority as a means of resolving such uncertainty. Key substations that form part of the interconnected UK transmission System and are essential for the maintenance of secure supplies should be considered in the same way as grid substations. For primary substations the target level of resilience should be Level 2 unless the company determines through its cost/benefit analysis that Level 3 resilience is appropriate in any given case. However, where substantial additional protection can be provided for a primary substation at marginal additional cost e.g. protection increased from Level 2 to Level 1, then companies should consider providing this enhanced level of protection. Each company should assess their infrastructure, document a programme of work and factor that programme into their investment plans as appropriate. These will be risk based programmes founded on the guidance established in this ERep and will be dependent on the availability of necessary funding. Joint transmission/distribution sites will be treated as indicated in Appendix 6. Careful consideration will need to be given to the implementation timescales. The overall timescale will be proposed by network operators when flood depth data is available to measure risk and mitigation for the individual substations. Network operators will need to consider the availability of contractor resources and equipment, the ongoing workload of the network operators in other areas and the inflationary implications of overwhelming the contractor market. Appropriate prioritisation and project planning will be required. As a general principle network operators will target the completion of agreed protection to grid and primary substations as follows:- - Transmission Sites By the end of the TPCR finishing in 2022. - Distribution Sites (Grid and Primary) By the end of the DPCR finishing in 2020. However, these timescales may be extended if additional substations are identified to be at risk due, for example, due to increased climate change allowances and/or visibility of risks associated with surface or ground water flooding. Network operators will prioritise their investment programmes to ensure that risk is appropriately managed during the implementation period consistent with available funding for these programmes. If it is likely to take more than one year to implement permanent mitigation then network operators should attempt to mitigate risk by establishing site specific actions in their emergency plans that will include:- - Considering the use of temporary barriers and minimising the damage likely to be inflicted by flooding e.g. by ensuring main transmission circuits can remain energised whilst the substation is out of action. These short term actions will also be applied if a substation requires relocation, which is likely to be a lengthy process. - Working with partner agencies under the Civil Contingencies Act to maximise the use of mutual aid and cooperation in order to minimise the impact of any electricity outage. (For any sites identified as being particularly vulnerable network operators may want to consider submitting them for inclusion in multi-agency flood plans.) - Identifying the plant and equipment at risk for a range of flood levels. - Use of temporary protection for the complete site or most vulnerable plant where reasonably practical and identifying suitable trigger levels, such as Environment Agency Flood Warnings - Identifying emergency switching or other arrangements to minimise the affects of a substation outage. - Identifying appropriate response staff and training them in flood resilience response. ### **APPENDIX 8** Risk Matrix Over Next Century— Refers to UKCP09 projections for the end of the century assuming a High Emissions Scenario and 90% probability level and no adaptation measures taken | dline cli mate projection | | Illustrative UKCIP data | | 2000- | Projected direct or indirect
impacts | Risks and opportunities | Consequences | Stakeholder
impacts | 2020s
Likelihood Impact | | Short
termrisk | 2050s Likelihood Impact | | Medium
termrisk | 2080s
Likelihood Impact | | Long
term risk | Actions already in
place/planned | Potential actions | Timescale
for action | | |--|---|-------------------------------|-----------------------------|--------------|--|--|--|---|---|--------|-------------------|--------------------------------------|--|--------------------|----------------------------|----------------------------|--|---|---|--------------------------------|--| | armerdrier summers | Temperature increase
Deg C maximum
predicted rise | 2020s
2.7 | 2050s
5.2 | 2080s
8.1 | | | | | Likainood | Impace | | Likaihood | Impact | | LikeIhood | Impact | | | | | | | | | | | | | Reduced rating of
overhead lines | Some circuits will
need earlier
upgrading | Some capital works
programmes brought
forward | -2 | -1 | -2 | ·З | -2 | -6 | -3 | -3 | -9 | | Factor rating
reduction into forwrad
CAPEX programme | | | | | | | | | Warmer summer daytime | Reduced rating of
underground
cables | Some circuits will
need earlier
upgrading | Some capital works
programmes brought
forward | -2 | -1 | -2 | -3 | -2 | -6 | -3 | -3 | -9 | | Factor rating
reduction into forwrad
CAPEX programme | | | | | | | | | temperatures ´ | Reduced rating of
transformers | Some transformers
will need earlier
upgrading | Some capital works
programmes brought
forward | -2 | -1 | -2 | -3 | -2 | -6 | -3 | -2 | -6 | | Factor rating
reduction into forwrad
CAPEX programme | | | | | | | | | | Reduced rating of
switchgear | Some switchgear
will need earlier
upgrading | Some capital works
programmes brought
forward | -2 | -1 | -2 | -3 | -2 | -6 | -3 | -2 | -6 | | Factor rating
reduction into forwrad
CAPEX programme | | | | | | | | | Heatwaves | Reduced rating of
transformers in
urban heat islands
e.g.London | | Some capital works
programmes brought
forward | -2 | -1 | -2 | ·3 | -2 | -6 | 3 | 3 | -9 | | Factor rating
reduction into forwrad
CAPEX programme | | | | | | | | | Ground drying | Possible damage
to earthing
systems | Earthing system
maintenance
increased | Some capital works
programmes brought
forward | -2 | -1 | -2 | -3 | -3 | -9 | -3 | -4 | -12 | | Factor incidence of
earthing system
upgrades into forward
CAPEX programme | | | | | | | | | Ground movement | Possible damage
to foundations and
underground
cables | Increased
incidence of
network faults | Increased incidence
of customer
interruptions | -2 | -1 | -2 | -3 | -2 | -6 | -2 | -2 | -4 | | Factor incidence of
earthing system
upgrades into forward
CAPEX programme | | | | | | | | | | Possible damage
to foundations of
overheda line
structures | Increased
incidence of
network faults | Increased incidence
of customer
interruptions | -2 | -1 | -2 | -3 | -2 | -6 | -2 | -2 | -4 | | | | | | Varmer wetter winters | Percentage increased rainfall | 20% | 41% | 73% | | | Substation | Supplies interrupted to customers | | | | | | | | | | In accordance with ENA
ETR 138, all | | | | | | | | | | River flooding | Flooding to most
vulnerable
substations | equipment
seriously damaged
and suppies
interrupted | including emergency
services and other
utilities. Lengthy and
expensive repairs. | -4 | -4 | -16 | -4 | -4 | -16 | -4 | -4 | -16 | substations surveyed
and appropriate
protection schemes
developed for sites at
risk | | 10 years | | | | | | | | | Floridantanad | Substation | Supplies interrupted to customers | | | | | | | | | | | In accordance with
ENA ETR 138, all
substations will be
surveyed and | | | | | | | | | Pluvial Flooding | Flooding to most
vulnerable
substations | equipment
seriously damaged
and suppies
interrupted | including emergency
services and other
utilities. Lengthy and
expensive repairs. | -3 | -4 | -12 | ġ | -4 | -12 | -3 | -4 | -12 | | appropriate protection
schemes developed
once EA/SEPA fluvial
flood risk data
becomes available
from late 2010 | 10 years | | | Sea level rise | Increase in coastal sea
levels | 12 cm | 26cm | 43 cm | Sea flooding | Flooding to most
vulnerable
substations | Substation
equipment
seriously damaged
and suppies
interrupted | Supplies interrupted
to customers
including emergency
services and other
utilities. Very lengthy
and expensive
repairs. | -3 | -5 | -15 | ंउ | -5 | -15 | з | -5 | -15 | In accordance with ENA
ETR 138, all
substations surveyed
and appropriate
protection schemes
developed for sites at
risk | | 10 years | | | rmerdrier summers and
varmerwetterwinters | Temperature increase Percentage Increased | 2.7 | 5.2
41% | 8.1
73% | Changes to vegetation growth including increased tree growth | Trees and other
vegetation
interfering with | Increased
incidence of
network faults | Increased incidence of customer interruptions | -3 | -1 | -3 | -3 | -1 | -3 | -5 | -2 | -10 | IDN | | | | | • | rainfall
Note regarding UKCIP da
This is illustrative data sho | ta
wing maximum prediction |
s for high emis | ssions and | | | onfidence Levels a
Section 5 of the Re | nd Thresholds | Plesae refer | l | | | | | | | | | | I | | | | 90% probability. Sea level
relative sea level change (
maximum increases for ea | om) with respect to 1990 I | evels. Location | | | | | | | _ | | | | , , | | | | | | | | | | | | | | | | Li kelihood | Likelihood
1
2
3
4
5 / | 1
Rare
Unlikely
Possible
Likely
Almost certain | | is
Š | Impact
-5
-4
-3
-2
-1 | Very high
High
Moderate
Low
Negligible | | is
ķ | -5
-4
-3
-2
-1 | Very high
High
Moderate
Low
Negligible | Ris <i>k</i> /opportuni
-5
-4
-3
-2
-1 | ty matrix
-10
-8
-6
-4
-2 | - 15
- 12
-9
-6
-3 | | | | | | | | | | | | | | unity | 0
1
2 | No change
Slight
minor | | unity | 0
1
2 | No
change
Slight
minor | 0
1
2 | 0
2
4 | 0
3
6 | | | | | | | | | | | | | | Opportu | 3
4
5 | Moderate
Major
Significant | | Opportu | 3
4
5 | Moderate
Major
Significan
t | 3
4
5 | 6
8
10 | 9
12
15 | | ### **APPENDIX 9** ### **UK TEMPERATURE CHARTS** NOTE: Charts for all other emission scenario and seasonal arrangements are available. | PLOT | ГΤΙ | TLE: | | | | SUN | име | R M | EAN | TEN | /IPE | RAT | URE | CH | ANG | ES | | | | | | | | | | | |-----------------|-----|------------|-----|------------|------------|---------------------------|-------|--------|-----|------|------|-----|------------|-----|--------------|---------------------|------------|-----|-----|-----|-----|-----|-----------|-----|--|--| | VARIABLE: | | | | | | Mea | an Da | aily T | emp | erat | ure | | | | TIME PERIOD: | | | | | | | | 2070-2099 | | | | | MEANING PERIOD: | | | | | | Summer
90th Percentile | | | | | | | | | | EMISSIONS SCENARIO: | | | | | | | High | | | | | PRO | BAE | BILIT | Υ: | | | 90t/ | n Per | cent | ile | | | | | | MA) | X: | 8.4 | | MIN | : | 5.0 | 5.0 | | | | | | | | | | | | | | | | | | | 5.1 | 5.0 | | | | | | | | 5.2 | 5.1 | | | | | | | | | | | | | | | | | 5.2 | 5.2 | 0.0 | | | 5.4 | 5.5 | 5.6 | 5.6 | 5.5 | 0.2 | 0.1 | | | | | | | | | | | | | | | | 5.2 | 5.3 | | | | 5.5 | 5.8 | 5.9 | 6.0 | 5.9 | 5.7 | 5.6 | 5.9 | 6.1 | 6.3 | 6.2 | 6.0 | | | | | | | | | | | | | | | | | | 5.0 | | 5.3 | 5.4 | 5.8 | 6.0 | 6.3 | 6.3 | 6.3 | 5.5 | 6.2 | 6.4 | 6.5 | 6.9 | 6.8 | 6.4 | 6.3 | 6.4 | 6.7 | 6.9 | 6.9 | 6.8 | 6.7 | 6.5 | 6.4 | 6.3 | 6.2 | | | | | | | | | | | | | | | | | | 5.7 | 6.6 | 7.1 | 7.1 | 7.0 | 7.0 | 7.0 | 6.8 | 6.7 | 6.5 | 6.3 | | | | | | | | | | | | | | | | | 5.6 | 5.8 | 6.8 | 6.9 | 7.1 | 7.1 | 7.1 | 7.1 | 7.1 | 6.9 | 6.6 | | | | | | | | | | | | | | | | | | 5.9 | 6.0 | 6.8 | 7.1 | 7.1 | 7.2 | 7.4 | 7.2 | 7.0 | 6.9 | 6.7 | | | | | | | | | | | | | | | | | | | 6.1 | 6.9 | 7.1 | 7.3 | 7.3 | 7.4 | 7.2 | 7.0 | 6.9 | | | | | | | | | | | | | | | | | | 5.6 | | 6.5 | 6.8 | 7.2 | 7.3 | 7.3 | 7.1 | 7.0 | 6.0 | 6.5 | 6.8 | 7.1 | 7.2 | 7.3 | 7.3 | 7.4 | 7.0 | | | | | | | | | | | | | 5.0 | 0.0 | 5.5 | 5.5 | 0.4 | 0.4 | | 6.3 | 6.6 | 6.8 | 7.0 | 7.2 | 7.3 | 7.3 | 7.1 | 7.0 | | | | | | | | | | | | 6.1 | 5.9
6.2 | 6.0 | 5.9
6.1 | 5.9
6.2 | 6.1 | 6.1 | | | 6.4 | 6.7 | 7.0 | 7.2
7.2 | 7.3 | 7.3
7.3 | 7.2 | 7.1 | 7.0 | | | | | | | | | | | 6.3 | 6.4 | 6.3 | 6.5 | 6.4 | 6.8 | 6.6 | | | 6.8 | 7.0 | 7.1 | 7.3 | 7.3 | 7.3 | 7.3 | 7.2 | 7.1 | | | | | | | | | | | 0.0 | 6.5 | 6.5 | 6.6 | 6.6 | 7.0 | 6.8 | | | 0.0 | 1.0 | 7.1 | 7.3 | 7.4 | 7.3 | 7.4 | 7.3 | 7.2 | | | | | | | | | | | | 0.0 | 0.0 |
6.6 | 6.6 | 6.5 | 6.8 | | | | | | 7.1 | 7.3 | 7.3 | 7.3 | 7.4 | 7.2 | 6.5 | | | 7.1 | 7.2 | 7.3 | 7.3 | 7.4 | 7.3 | 7.0 | 7.3 | 7.4 | 7.4 | 7.5 | 7.4 | 6.5 | 7.2 | 7.3 | 7.4 | 7.6 | 6.7 | 6.5 | 6.5 | 6.9 | 7.1 | 7.4 | 7.4 | 7.0 | 6.9 | 6.7 | 6.6 | | | | | | | | | | | | | | | | | 6.0 | | | | 6.4 | 6.6 | 7.5 | 7.5 | 7.0 | 7.0 | 6.8 | 6.7 | | | | | | | | | | | | | | | | | 6.4 | 6.4 | 6.5 | 6.5 | 6.7 | 6.8 | 6.8 | 7.0 | 7.1 | 7.0 | 6.9 | 6.7 | | | | | | | | | | | | | | | | 6.4 | 6.7 | 6.6 | 6.7 | 6.9 | 6.9 | 7.0 | 6.9 | 7.0 | 7.1 | 7.1 | 7.0 | 6.8 | | | | | | | | | | | | | | | | | 7.0 | 6.9 | 7.0 | 7.2 | 7.1 | 7.0 | 7.0 | 7.1 | 7.2 | 7.2 | 7.0 | 6.8 | | | | | | | | | | | | | | | | | 7.1 | 7.2 | 7.4 | 7.4 | 7.3 | 7.3 | 7.4 | 7.3 | 7.3 | 7.3 | 7.1 | 7.0 | 6.7 | 7.5 | | | | | | | | | | | | | | | | 6.9 | | 7.0 | 7.2 | 7.3 | 7.3 | 1.1 | | | | | | | | | 7.8 | | | | | | | 6.9 | | | | | | | | | | | 7.3 | 7.5 | | 8.0 | | | | | 8.1 | | 7.9
8.0 | 8.0 | | 7.8 | | 7.3 | 7.1 | | | | | | | | | | 7.2 | 7.3 | 7.6 | | | | | | | | | | | | | 7.8 | | 1.5 | | | | | | | | | | 7.1 | | | 7.9 | | | | | | | | | | 8.2 | | | | | | | | | | | | | 7.1 | 7.3 | | | | 7.9 | | | 8.2 | | | | | | | 8.2 | | | | 7.5 | 8.3 | ### **APPENDIX 10** ### **EMISSIONS SCENARIOS IN UKCP09** The following information is extracted from UKCP09. We need to make some assumptions about future emissions of greenhouse gases (and other pollutants) from human activities in order to make projections of UK climate change over the next century. Because we cannot know how emissions will change, we use instead a number of possible scenarios of these, selected from the IPCC <u>Special Report on Emissions Scenarios (SRES)</u> (Nakicenovic and Swart, 2000). These correspond to a set of comprehensive global narratives, or storylines, that define local, regional and global socioeconomic driving forces of change such as economy, population, technology, energy and agriculture – key determinants of the future emissions pathway. The scenarios are alternative conceptual futures to which no probabilities can be attached. SRES emissions scenarios are structured in four major families labelled A1, A2, B1 and B2, each of which represents a different storyline. They are commonly shown as in the figure above where the vertical axis represents the degree to which society is economically or environmentally oriented in the future, whilst the horizontal axis refers to the degree of globalisation. All scenarios are non-interventionist, that is, they assume that emissions will not be changed in response to concerns over climate change. The A1 storyline describes a future world of very rapid economic growth, and a population that increases from 5.3 billion in 1990 to peak in 2050 at 8.7 billion and then declines to 7.1 billion in 2100. Rapid introduction of new and efficient technologies is assumed, as is convergence among regions, including large reductions in regional differences in Gross Domestic Product (GDP). Within the A1 family are three subgroups, referring to high use of fossil fuels (A1F1), high use of non-fossil energy sources (A1T) or an intermediate case (A1B). The B1 storyline also describes a convergent, more equitable world, and has the same population scenario as the A1 storyline: however, rapid changes in economic structures towards a service and information economy are assumed, with reductions in material intensity, and the introduction of clean and resource-efficient technologies. Global solutions are found to economic, social and environmental sustainability. The High, Medium, and Low emission scenarios in the UKCP09 report correspond to the A1F1, A1B and B1 SRES scenarios. The High and Low emission scenarios are the same as those of the same name used in UKCIP02. They span almost the full range of SRES scenarios, with cumulative (2000-2100) CO2 emissions of 2189 GtC and 983 GtC respectively. SRES A2 and B2 storylines, with higher, continuously increasing population scenarios (to 15.1 and 10.4 billion in 2100 respectively), are not used in UKCP09, as the population assumed in the A2 storyline is significantly higher than the high end of current projections. Extreme high or low emissions scenarios, for example very high rates of fossil fuel combustion or strong mitigation in response to concerns over climate change, are also not considered in the projections available from UKCP09. The UKCP09 Low emissions scenario (SRES B1) does, according to some models, result in approximate stabilisation of CO2 concentrations between about 500 ppm and 600 ppm. However, when the full (ocean and land) climate-carbon cycle feedback is included, as is done in UKCP09, then the CO2 concentrations will vary over a wide range.