Pelectricity

Bringing energy to your door

書圖正書合書

Enhancing the Real Options CBA tool

Dr Antonella De Corato, Dr Christos Kaloudas February 2025

Stay connected... **F III III** www.enwl.co.uk

• Enhancing the Real Options CBA (ROCBA) tool – Executive summary

- Flexibility evaluation tools
 - A real options approach
 - ROCBA tool
 - CEM tool
- Enhancing the ROCBA tool
 - Results validation against CEM tool
 - Re-platformed CEM tool additional functionalities
 - Example using the enhanced ROCBA tool

Why did we create ROCBA in RIIO-ED1

- With the greater uncertainty around widespread distributed energy resources (DER) and low carbon technologies (LCTs) and demand growth in distribution networks, it is crucial to ensure that the most costefficient and risk-aware solutions to release network capacity are deployed.
- A **Cost Benefit Analysis (CBA) tool** is required by DNOs to evaluate flexibility and asset solutions equitably and help choosing the minimum intervention(s)' whole life cost/least regret option.
- A Real Options approach highlights in a quantitative way the value of the flexibility of decision-making under multiple uncertain future scenarios*, compared to a deterministic CBA approach which assumes one single view of the future.
- This entails the option/ability to adjust the intervention strategy, responding to new information as it arrives over time.
- In 2016, ENWL developed, in collaboration with the University of Manchester, a Real Options CBA (ROCBA)
 Excel tool to quantify the costs and benefits of several long-term investment strategies to provide network capacity under uncertainty, testing them against all possible future scenarios.

* Defined by our Distribution Future Electricity Scenarios (DFES). Online: <u>https://www.enwl.co.uk/dfes</u>

ROCBA's strengths and weaknesses

- For each strategy, the tool calculates *different* cost and risk metrics considering long-term uncertainty in future peak demand growth ('macro scenarios') as well as sources of 'micro' uncertainty and small-scale variations around each macro scenario, following a probabilistic representation of relevant random variables, (e.g. energy prices and weather conditions).
- In our ED2 business plan, we highlighted that positively engaging with as many solution providers as possible is key to ensure that we have the widest range of options possible for evaluation, to adopt the most suitable economic approaches and deliver efficiencies for customers. This requires the ability to quickly and easily run hundreds of flexibility option assessments.
- However, the Excel implementation of the tool comes with **limited scalability and flexibility,** e.g. in the number of macro scenarios, strategies and intervention types, and there is **complexity** regarding its **outputs' inspection and visualisation**.
- For example, the calculation of **flexibility ceiling price** requires multiple simulations while **manually** changing flexibility services capacity payments.
- Moreover, it is **not straightforward** to **update** and **improve** the functionalities of the tool, as some of the wider network and societal impacts of the different interventions, such as changes in Customer Interruptions (CIs) and Customer Minutes Lost (CMLs), carbon emissions, oil leakage, health and safety are not included.

Why did we help create the CEM tool and CEM tool's limitations

- In 2019 Ofgem flagged the *inconsistent approach* as DNOs were experimenting with different evaluation methods for flexibility.
- ROCBA's holistic approach to network investment analysis was recognised by the ENA Open Networks Project. In 2020, under Workstream 1A, Product 1, ENWL/SPEN used the experience and know-how of the industry to lead the development of a Common Evaluation Methodology (CEM) for flexibility services and a CEM Excel tool, based on Ofgem's CBA and ROCBA tools.
- The CEM tool can perform a scenario-weighted average as well as a Least-Worst Regret Net Present Value (LWR NPV) analysis, and determines the 'ceiling' price of flexibility, thus capturing the option value of flexibility under multiple uncertain future scenarios.
- The tool has been used by *all* DNOs since April 2021, promoting **consistency** and **transparency** on the decision-making process.
- However, **scalability and flexibility of the tool is limited** as only up to **10 scenarios for each strategy** can be simulated, along with time issues of manual operations.
- Unlike the ROCBA tool, the CEM tool models only macro scenarios and it is not possible to perform a probabilistic assessment of costs (through micro scenarios) and evaluate the financial and physical network risks of a strategy.

Why are we enhancing ROCBA

- In order to facilitate and speed up the assessment process of multiple investment strategies across a wider range of
 future network forecasts, in our ED2 business plan we committed to further develop the capabilities of the ROCBA tool*
 to maintain its position as a state-of-the-art decision support tool across all network investment strategies.
- In autumn 2024, we successfully re-platformed the ROCBA tool to Python and automated and expanded its original functionalities. The decision to use Python lies in the flexibility of the platform along with its widespread use across the industry in conjunction with other system planning tools.

What has been done

- The **new enhanced script-based ROCBA tool** implementation follows an **object-oriented structure.** This architecture enhances the tool's **scalability and flexibility** across **both macro and micro scenarios**, as a theoretically unlimited number of interventions, strategies and sites can be simulated under multiple future scenarios.
- Functionalities such as **flexibility ceiling price/yearly budget** calculation and the **creation/storage of outputs** (as separate Excel files) are now **automated**. This facilitates output results visualisation, inspection and analysis.
- Finally, cost components previously overlooked in the Excel ROCBA tool, e.g. flexibility services utilisation payments, depreciation, RAV, CIs, CMLs, oil leakage, health and safety costs and carbon emissions, are now explicitly considered.

^{*} CEM is a 'cut-down' version/'industry equivalent' of the ROCBA tool for flexibility services procurements evaluations.

What has been done (continued)

- As the CEM is a 'cut-down' version of the ROCBA tool for flexibility services procurement evaluations, the replatforming of ROCBA resulted in an enhanced re-platformed automated version of the CEM tool* as a 'by-product', which also has the ability to run multiple micro-scenarios.
- Compared to the original Excel CEM tool, not only could the interventions be triggered at a specific user-defined point in time, but also by the demand growth under each different scenarios (and associated volatility in micro-scenarios). This new functionality unlocks the option to run a probabilistic assessment of costs as well as the financial and physical network risks of a strategy.
- To demonstrate the successful re-platforming and automation of the ROCBA tool, a first step we took was to validate against the CEM tool as a 'subset' of its capabilities, i.e. without micro-scenarios**.
- After demonstrating that the results of the Python-based and Excel-based CEM tool match with an illustrative example, we also show the full range of capabilities of the new enhanced Python-based ROCBA tool.

^{*} With interventions taking place at specific user-defined 'tipping points' (i.e. years) rather than being led by peak demand scenarios.

^{**} The validation of the new enhanced tool with respect to the full ROCBA functionalities, including micro-scenarios, is more complex. In fact, it is not straightforward to replicate the same set of Monte Carlo simulations (i.e. micro-scenarios) as these rely on the generation of a set of random numbers by two different platforms (i.e. Excel vs Python).

- ROCBA/CEM tool Python scripts will be made available to download from our website and shared with other DSOs.
- This is to encourage other DSOs to use, review and provide feedback on it.
 - ENWL is available to hold briefings and training sessions to disseminate knowledge.

- No change in transparency commitment.
 - ENWL will continue to publish results of evaluations.

• Enhancing the Real Options CBA (ROCBA) tool – Executive summary

• Flexibility evaluation tools

- A real options approach
- ROCBA tool
- CEM tool
- Enhancing the ROCBA tool
 - Results validation against CEM tool
 - Re-platformed CEM tool additional functionalities
 - Example using the enhanced ROCBA tool

DNO obligations

 Subject to a combination of licence obligations and incentives from Ofgem, DNOs must comply with very high standards regarding security of electricity supply, customer service and customer safety, while guaranteeing the most efficient solutions for the consumer.

Risks and uncertainty

• With the **greater uncertainty from widespread DER and LCTs** in distribution networks, there is a **risk** of investing too much or too little in network capacity, potentially leading to an inefficient use of network assets*.

Managing the risks/uncertainty using appropriate tools

- A **CBA tool** is used to **evaluate** a wide range of potential **interventions.** This is very important for DNOs as they must ensure that the most **cost-efficient** and **risk-aware interventions** to release network capacity are deployed.
- In particular, DNOs require a tool to evaluate flexibility and asset solutions equitably and help choosing the minimum intervention(s)' whole life cost/least regret option, and ensure that load-related investment is well-justified from a regulatory and business perspective

* Traditional network investments are relatively inflexible: underinvestment could lead to greater connections delays, becoming a blocker to net zero, and incentive penalties on the DNO; overinvestment could cause the underutilisation and stranding of certain assets.

• Enhancing the Real Options CBA (ROCBA) tool – Executive summary

- Flexibility evaluation tools
 - A real options approach
 - ROCBA tool
 - CEM tool
- Enhancing the ROCBA tool
 - Results validation against CEM tool
 - Re-platformed CEM tool additional functionalities
 - Example using the enhanced ROCBA tool

- A deterministic CBA approach assumes one single view of the future, as in Ofgem's CBA tool, and that the investment decision is a now-or-never decision, not capturing the option value of flexibility under multiple uncertain future scenarios.
- A **Real Options approach,** based on the rationale of financial option pricing methods, refers to the option/ability to adjust the intervention strategy, responding to new information as it arrives over time.
- The 'best' strategy is selected among the list of possible flexible strategies, considering the range of possible futures, with their relative likelihoods, and subsequent adaptations to them.
- Real Options do not 'create' flexibility but **highlight in a quantitative way** the **value** of the **flexibility of decision-making**, both in the timing of a decision and in the design of the project, **under uncertainty**, which is particularly important in a network investment context.

- 'Real options' in engineering are useful for investments when:
 - **Strategic flexibility exists**, that is the possibility to take 'intermediate' actions (e.g. by procuring distribution flexibility service capacity, the options to invest, abandon, defer or expand are created based on how the future unfolds).
 - Decision to invest based on **uncertain information** (e.g. demand growth).
 - Financially material uncertainty, e.g. in future movements of key variables influencing future cash flows.
 - Investment is fully/partly irreversible. In the context of network investment, this condition applies, as there is typically an irreversible loss of capital due, for example, to high sunk costs or depreciation.
- In 2016, in collaboration with the University of Manchester, we developed a Real Options CBA (ROCBA) Excel tool to quantify the costs and benefits of several long-term investment strategies to provide network capacity under uncertainty, testing them against all possible future scenarios.
- Since 2016, we have adopted this tool to compare investment solutions, based on different decision criteria, including reinforcement vs flexibility services, reinforcement vs like-for-like asset replacements.

• Enhancing the Real Options CBA (ROCBA) tool – Executive summary

• Flexibility evaluation tools

- A real options approach
- ROCBA tool
- CEM tool
- Enhancing the ROCBA tool
 - Results validation against CEM tool
 - Re-platformed CEM tool additional functionalities
 - Example using the enhanced ROCBA tool

Functionalities and capabilities

- The tool allows us to assess and analyse different cost and risk metrics, both financial and technical, associated with different strategies, accounting for long-term uncertainty in future peak demand growth (i.e. 'macro' scenarios).
- Each strategy, associated to a specific worksheet, is a predefined set of interventions that may take place at 'tipping points', either user-defined or in accordance with demand growth scenarios (and associated volatility in micro-scenarios). All scenarios are modelled within each strategy, so that each worksheet 'Strategy X' contains each and all scenarios.
- In addition, the model may also consider sources of 'micro' uncertainty and small-scale variations around each macro scenario through Monte Carlo simulations, based on a probabilistic representation of relevant random variables, (e.g. energy prices and weather conditions).
- For each worksheet 'Strategy X' and each and all scenarios, Monte Carlo simulations are run to create the corresponding probability distribution for each specific combination of 'Strategy X'.
- The analysis can be performed from different 'financial views/perspectives', i.e. DNO commercial vs regulatory, with consequent impacts on CBA time scales as well as discount rates and inclusion of social costs.

Outputs of the tool include:

- 'Optimal' investment strategy for the current year, identified in accordance with a pre-determined decisionmaking criterion, to be reassessed every year as new information on the scenarios and estimated uncertainty arrives over time (i.e. receding horizon approach).
- Ranking of the considered strategies by different metrics (expected cost, LWR, expected cost weighted with risk metrics, and so on).
- Probabilistic distribution of future costs and network risk of each strategy, through the corresponding Value at Risk (VaR) and Conditional Value at Risk (CVaR), along with the overall probability-weighted distribution of future costs and risks for each strategy.
- Trajectory of network capacity and cash flow outputs per macro-scenario.

Strategy Implementation

MS Excel implementation limitations

• In our ED2 business plan, we highlighted that positively engaging with as many solution providers as possible is key to ensure that we have the widest range of options possible for evaluation, to adopt the most suitable economic approaches and deliver efficiencies for customers. This requires the ability to quickly and easily run hundreds of flexibility option assessments. However:

Scalability and flexibility is limited as:

- The long-term peak demand uncertainty model is restricted to 5 scenarios.
- Only up to 2 strategies, consisting of a sequence of up to 3 interventions* taking place at 'tipping points' over the CBA period can be analysed.
- The number of Monte Carlo simulations to model small-scale variations occurring within each long-term peak demand scenario is currently set to 100.
- Despite the Excel tool user-friendliness, it is not straightforward to update and improve its functionality. For example, the calculation of flexibility ceiling price requires multiple simulations while manually changing flexibility service capacity payments.
- Additionally, there is **complexity** regarding its **outputs' inspection and visualisation**. For example, outputs (i.e. diagrams and tables) appear in different spreadsheet tabs (many of them duplicated).

* i.e. 'Invest in asset/reinforce' or 'flexibility' intervention types or 'do nothing'.

• Enhancing the Real Options CBA (ROCBA) tool – Executive summary

• Flexibility evaluation tools

- A real options approach
- ROCBA tool
- CEM tool
- Enhancing the ROCBA tool
 - Results validation against CEM tool
 - Re-platformed CEM tool additional functionalities
 - Example using the enhanced ROCBA tool

Background

- In 2019 Ofgem flagged the *inconsistent approach* due to the different evaluation methods being used by DNOs experimenting with flexibility services as alternative solutions.
- In 2020, the ENA Open Networks Project recognised ROCBA's holistic approach to network investment analysis and used the tool as the foundation* to develop a common evaluation methodology (CEM) for flexibility services and an associated Excel-based CEM tool. This work, under Workstream 1A, Product 1, was led by ENWL in collaboration with the other DNOs.
- The tool has been used by *all* DNOs since April 2021, promoting **consistency** and **transparency** on the decision-making process to meet network needs, choose the most economical solution between traditional network asset solutions and procure flexibility services. The tool can be used for evaluating a range of intervention options.
- This also promotes greater **visibility** and **confidence among flexibility providers**, boosting volumes and market competition, potentially reducing costs for customers.

Functionality

- The CEM tool **captures the option value* of flexibility** under multiple uncertain future scenarios, whether through a scenario-weighted average or LWR NPV analysis.
- The CEM tool also determines the 'ceiling' price of flexibility that could be justified beyond which it is no longer costeffective to defer reinforcement (i.e. NPV=0).

*Along with Ofgem CBA tool.

** The intrinsic value of flexibility is the value corresponding to a single 'best view' scenario, the total option value relates to the value when looking across all scenarios, e.g. through LWR or weighted average approach.

Strengths and limitations

- Its methodology considers some of the wider network and societal impacts of different interventions, such as the impact of changes in CIs and CMLs, carbon emissions, oil leakage, health and safety, which are not included in ROCBA, as well as network losses (included in ROCBA).
- With regard to facilitating and speeding up the assessment process across a wider range of future network forecasts, scalability and flexibility is limited as the CEM tool allows only up to 10 scenarios for each strategy* to be simulated.
- Within the CEM tool, only macro scenarios are simulated, whereas the impact of micro scenarios** and the
 probabilistic assessment, enabled within the ROCBA tool, is not included. Therefore, it is not possible to
 calculate the distribution of costs and evaluate the financial and physical network risks of a strategy.
- Additionally, the CEM tool only takes the regulatory perspective, following the Ofgem CBA tool.

**e.g. shorter-term uncertainty from flexibility contract prices, availability, peak load adjustments, weather.

^{*}While ROCBA has 2 breakpoints (i.e. 3 intervention stages), the CEM has 1 'breakpoint', i.e. one point in time over the CBA period where the network investment can occur (i.e. 2 intervention stages, being flexibility services procurement followed by traditional network investment). Therefore, a 'strategy' corresponds to a different number of deferral years.

- Enhancing the Real Options CBA (ROCBA) tool Executive summary
- Flexibility evaluation tools
 - A real options approach
 - ROCBA tool
 - CEM tool

• Enhancing the ROCBA tool

- Results validation against CEM tool
- Re-platformed CEM tool additional functionalities
- Example using the enhanced ROCBA tool

- In autumn 2024, we successfully re-platformed the ROCBA tool to Python as well as automated and expanded its
 original functionalities. The decision to use Python lies in the flexibility of the platform along with its widespread use
 across the industry.
- The **new enhanced script-based ROCBA tool** implementation follows an **object-oriented structure**. This architecture enhances the tool's **scalability and flexibility** across **both macro and micro scenarios**, as a theoretically unlimited number of interventions, strategies and sites can be simulated under multiple (unconstrained number of) future scenarios.
- When the interventions take place at specific user-defined 'tipping points' (i.e. years), the CEM tool can be considered a 'cut-down' version' of the ROCBA tool.
- Hence, the re-platforming of ROCBA resulted in an enhanced re-platformed automated version of the CEM tool as a 'by-product'.
- In fact, compared to the original Excel CEM tool, not only could the interventions be triggered at a specific userdefined point in time, but also by the demand growth under each different scenarios (and associated volatility in micro-scenarios). This new functionality unlocks the option to run a probabilistic assessment of costs as well as the financial and physical network risks of a strategy.
- A summary of the enhancements to the ROCBA tool is provided in the next slide.

Summary of enhancements to the ROCBA tool

Old ROCBA Excel-based tool	New ROCBA Python-based tool
Applicability limited to 2 strategies, 3 interventions (i.e. 2 'tipping points'), 5 macro scenarios and 100 Monte Carlo simulations .	Scalable and flexible. Unlimited number of interventions, strategies and Monte Carlo simulations (i.e. 'micro' scenarios) run under multiple macro scenarios.
Determination of the flexibility ceiling price requires multiple simulations performed by manually changing flexibility service capacity payments.	Flexibility ceiling price/yearly budget automatically calculated based on price sensitivity analysis.
Cost components e.g. flexibility service utilisation payments, depreciation, RAV, CI, CML, oil leakage, health and safety costs and carbon emissions, are not explicitly considered.	Incorporates flexibility services utilisation payments, depreciation, RAV, CI, CML, oil leakage, health and safety costs and carbon emissions costs.
The model can only calculate the loss effects of the 1 st and 2 nd traditional intervention.	Losses calculation extended to all successive intervention within each strategy.
Difficult to visualise, inspect and analyse the outputs.	Automated creation/storage of outputs (as separate Excel files).

Inputs

(e.g. techno-economic parameters of each intervention, demand growth by scenario for site under analysis, etc.)

Object-oriented implementation in Python

Unrestricted/unlimited number of intervention types, strategy types and sites can be simulated under multiple scenarios.

Scalable and flexible across macro scenarios

Each site (e.g. substation) is characterised by its specific demand growth profiles under multiple macro scenarios.

(e.g. risk and costs assessment and results for each strategy)

Enhancing the Real Options CBA tool, Dr A. De Corato, Dr C. Kaloudas, ENWL, 2025

Outputs

Intervention

Type (i.e. flexibility services or network reinforcement)

Additional capacity for network solution

First/last year of operation

Asset loading threshold

Asset lifetime and lead time

Embedded emissions

Losses parameters

Maximum flexibility total availability

Average size of contract per customer

Minimum flexibility contract length

Flexibility contract type

Cost parameters

Strategy

Sequence of intervention

Oil leakage (litres)*

#fatal/non-fatal injuries*

CML*

#CI*

For flexibility strategies, total flexibility availability and utilisation per year per scenario*

*if activation of each intervention is user-defined.

Site

Initial firm capacity

Demand growth trends

Scenario probability weights and volatility

'Best view' scenario

Sequence of strategies

Initial losses parameters

Weather-related volatility

Financial view

Financial parameters: e.g. discount rate, planning horizon, totex treatment, capitalisation rate, WACC, cost per fatal/nonfatal injury, cost per litre oil, cost per CI/CML

Baseline strategy

To facilitate results visualisation, inspection and analysis, the tool's outputs include a **separate Excel file to store**:

- **Trajectory of network capacity** for each strategy under each macro scenario.
- **NPV analysis** of each strategy, assessed in absolute terms as well as with respect to a pre-determined baseline strategy (with breakdown of costs associated with losses), along with LWR analysis of both financial/cash flows and network risk.
- Probabilistic distribution of future costs and network risk of each strategy along with the overall scenario probability-weighted distribution of future costs for each strategy.

Example of network capacity trajectory output in excel

4	А	В	С	D	E	F
		Falling short	Consumer	Best View	Leading	System
			Transformation		the Way	Transformation
	2024	17.5	17.5	17.5	17.5	17.5
	2025	17.5	17.5	17.5	17.5	17.5
	2026	17.5	17.5	17.5	17.5	17.5
	2027	17.5	17.5	17.5	17.5	17.5
	2028	17.5	17.5	17.5	17.5	17.5
	2029	17.5	17.5	17.5	17.5	17.5
	2030	17.5	17.5	17.5	17.5	17.5
	2031	17.5	17.5	17.5	17.5	17.5
D	2032	17.5	17.5	17.5	17.5	17.5
1	2033	17.5	17.5	17.5	17.5	17.5
2	2034	17.5	17.5	17.5	17.5	17.5
3	2035	17.5	17.5	17.5	17.5	17.5
4	2036	17.5	17.5	17.5	17.5	17.5
5	2037	17.5	18	17.5	17.5	17.5
5	2038	17.5	19	17.5	17.5	17.5
7	2039	18.5	19.5	17.5	17.5	17.5
3	2040	18.5	20	17.5	17.5	17.5
)	2041	19	20.5	17.5	17.5	17.5
) כ	2042	19.5	21	17.5	17.5	17.5
L	2043	20	21.5	18	17.5	17.5
2	2044	20	22	18.5	17.5	17.5
3	2045	20.5	22.5	19	17.5	17.5
1	2046	21	23	19	18	17.5
	Þ	Strategy	0 Strategy	1 Strat	egy_2	Strategy_3

- For each strategy, **discounted (and nondiscounted) cash flows** for each year and a Monte Carlo simulation under each macro scenario, to facilitate data inspection.
- For each strategy, **residual excess load** for each year and a Monte Carlo simulation under each macro scenario, to facilitate data inspection.
- Flexibility service ceiling price and yearly budget, both deterministic of each strategy under each scenario, and stochastic (i.e. scenario-weighted).

Example of discounted cash flow outputs in Excel for a specific strategy

	А	В	С	D	E	F	G	н	I.	J	К	L	М	N	0	Р	Q	R	S	т	U
1		N=1	N=2	N=3	N=4	N=5	N=6	N=7	N=8	N=9	N=10	N=11	N=12	N=13	N=14	N=15	N=16	N=17	N=18	N=19	N=20
2	2024	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	2025	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	2026	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	2027	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	2028	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	2029	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	2030	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	2031	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	2032	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	2033	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	2034	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	2035	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	2036	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	2037	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	2038	0	0	0	0	0	0	0.01655	0	0.01655	0	0	0.01655	0	0.01655	0	0	0.01655	0	0.01655	0
17	2039	0.03198	0.03198	0.03198	0.03198	0.01599	0.03198	0.03513	0.03198	0.03513	0.03198	0.03198	0.03513	0.03198	0.03513	0.03198	0.03198	0.03513	0.03198	0.03513	0.01599
18	2040	0.03699	0.03699	0.03699	0.03699	0.03394	0.03699	0.04	0.03699	0.04	0.03699	0.03699	0.05544	0.03699	0.05544	0.03699	0.03699	0.05544	0.03699	0.05544	0.03394
19	2041	0.05647	0.05647	0.05647	0.05647	0.05357	0.05647	0.05933	0.05647	0.05933	0.05647	0.05647	0.06227	0.05647	0.06227	0.05647	0.05647	0.06227	0.05647	0.06227	0.05357
20	2042	0.07735	0.07735	0.07735	0.06293	0.06017	0.07735	0.08006	0.07735	0.08006	0.07735	0.06293	0.08286	0.07735	0.08286	0.07735	0.07735	0.08286	0.07735	0.08286	0.06017
21	2043	0.08544	0.09937	0.09937	0.08269	0.08006	0.09937	0.10195	0.08544	0.08802	0.09937	0.08269	0.10462	0.09937	0.10462	0.09937	0.08544	0.10462	0.09937	0.10462	0.08006
22	2044	0.10619	0.10885	0.10885	0.10357	0.10108	0.10885	0.1113	0.10619	0.10864	0.10885	0.10357	0.11383	0.10885	0.11383	0.10885	0.10619	0.12729	0.10885	0.11383	0.10108
23	2045	0.12785	0.13038	0.13038	0.12536	0.12299	0.13038	0.13271	0.12785	0.13018	0.13038	0.12536	0.13512	0.13038	0.13512	0.13038	0.12785	0.13768	0.13038	0.13512	0.10998
24	2046	0.15021	0.15262	0.15262	0.13528	0.13303	0.15262	0.14226	0.13765	0.13986	0.15262	0.13528	0.15712	0.15262	0.15712	0.15262	0.13765	0.15956	0.15262	0.15712	0.13055
-	Fa	lling short	Consu	umer Tran	sformatio	n Bes	t View	Leading t	he Way	Systen	n Transfor	mation .	+ :	4							

- Enhancing the Real Options CBA (ROCBA) tool Executive summary
- Flexibility evaluation tools
 - A real options approach
 - ROCBA tool
 - CEM tool

• Enhancing the ROCBA tool

- Results validation against CEM tool
- Re-platformed CEM tool additional functionalities
- Example using the enhanced ROCBA tool

- From an implementation perspective, the ability to run 'micro scenarios' (i.e. through Monte Carlo simulations) around each macro scenario relies on the ability to generate a set of random numbers following a pre-defined probability distribution (e.g. gaussian).
- However, to validate the new enhanced script-based tool with respect to the full ROCBA functionalities, including micro-scenarios, it is necessary for the same set of Monte Carlo simulations (i.e. micro-scenarios) to be run.
- Nonetheless, as these rely on the generation of a set of random numbers by two different platforms with different implementation methods (i.e. Excel vs Python), this limits the replicability of the simulations and makes the validation process more complex.
- For this reason, to demonstrate the successful re-platforming and automation of the ROCBA tool, a first step we took was to validate against the CEM tool as a 'subsection' of its capabilities, i.e. without micro-scenarios.

- For the validation, we used the illustrative example reported in the ENA 'CEM User guide' document, and then compared the results.
- In this case, the interventions take place at specific user-defined 'tipping points' (i.e. years).
- We compare a traditional network reinforcement intervention (NR), i.e. 'Baseline' strategy, with other strategies involving the procurement and use of flexibility services for an increasing number of (deferral) years.
- In this regard, the deferred reinforcement costs are used as the counterfactual.
- For the purpose of results comparison (and validation), only one single simulation is run rather than hundreds of Monte Carlo simulations.

Input data in Python-based tool

- The summary of the different strategies is reported in the table here, where the range of years when the intervention is 'active' is reported in brackets. For traditional network reinforcement (NR) interventions, the first year of operation is reported only.
- In this example, the way the strategies are numbere corresponds directly to the number of deferral years.
- Baseline:
 - Reinforcement costs: 1 £m
 - Intervention start year: 2024
 - Base year (decision year): 2024
- Flex services:
 - Contract shape*: Ramping
 - Availability price: 5 £/MW (fixed)
 - Utilisation price: 10 £/MWh
- All scenarios are assumed to be equally probable.

* See ENA's 'Common Evaluation Methodology and Tool' for more details.

Strategy	Intervention 1	Intervention 2	Deferral years
Baseline	NR (2024)	-	0
1	Flex (2024)	NR (2025)	1
2	Flex (2024-2025)	NR (2026)	2
3	Flex (2024-2026)	NR (2027)	3
4	Flex (2024-2027)	NR (2028)	4
5	Flex (2024-2028)	NR (2029)	5
6	Flex (2024-2029)	NR (2030)	6
7	Flex (2024-2030)	NR (2031)	7
8	Flex (2024-2031)	NR (2032)	8
9	Flex (2024-2032)	NR (2033)	9
10	Flex (2024-2033)	NR (2034)	10

£5.00 £10.00

Input data in CEM Excel-based tool

BASELINE REINFORCEMENT AND UPFRONT CAPEX (TO BE DEFERRED)	2024	2025	Initial flexibility price assumptions
Cost 1	£ 1,000,000		Availability Price (F/MW/h)
Cost 2			Utilization Drice (C/MWb)
Cost 3			Dunsation Price (£/MWh)
Total	£ 1,000,000		

Total capacity of availability procured

each year (MW.h/y)	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Flexibility under Best view	1,500.0	1,700.0	1,800.0	2,000.0	2,200.0	2,400.0	2,600.0	2,800.0	3,000.0	3,200.0	3,400.0	3,600.0
Flexibility under Consumer Transformation	1,400.0	1,570.0	1,950.0	2,400.0	2,960.0	3,350.0	4,030.0	5,460.0	7,140.0	8,720.0	10,760.0	12,980.0
Flexibility under Falling Short	500.0	510.0	630.0	750.0	890.0	1,050.0	1,250.0	1,620.0	1,970.0	2,390.0	2,640.0	2,920.0
Flexibility under Leading the Way	1,800.0	2,310.0	2,680.0	3,110.0	3,590.0	4,280.0	5,440.0	6,950.0	8,810.0	10,750.0	12,950.0	15,180.0
Flexibility under System Transformation	1,200.0	1,340.0	1,500.0	1,680.0	1,870.0	2,160.0	2,380.0	2,680.0	3,000.0	3,300.0	4,650.0	5,400.0

Expected annual volume of utilisation

dispatched (MWh/y)	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Flexibility under Best view	1,200.0	1,360.0	1,440.0	1,600.0	1,760.0	1,920.0	2,080.0	2,240.0	2,400.0	2,560.0	2,720.0	2,880.0
Flexibility under Consumer Transformation	1,120.0	1,256.0	1,560.0	1,920.0	2,368.0	2,368.0	3,224.0	4,368.0	5,712.0	6,976.0	8,608.0	10,384.0
Flexibility under Falling Short	400.0	408.0	504.0	600.0	712.0	840.0	1,000.0	1,296.0	1,576.0	1,912.0	2,112.0	2,336.0
Flexibility under Leading the Way	1,440.0	1,848.0	2,144.0	2,488.0	2,872.0	3,424.0	4,352.0	5,560.0	7,048.0	8,600.0	10,360.0	12,144.0
Flexibility under System Transformation	960.0	1,072.0	1,200.0	1,344.0	1,496.0	1,728.0	1,904.0	2,144.0	2,400.0	2,640.0	3,720.0	4,320.0

According to the input data, no flexibility is required after 2035.

- The top table is a screenshot of the Excel-based CEM tool, reporting the total cumulative benefits (i.e. NPV) of each 'deferral' strategy.
- These results are compared to the NPV calculated by the re-platformed automated tool in Python. An additional row shows the weighted average NPV of each strategy.
- From the comparison, it is clear that the results in the two tables match.

					Baselin	ie	1	2	3	4	5	6	7	8	9	10
ol		Cumulative ben benefit from fur	efit of deferr ther deferra	ral (excluding l)		Defer by to 2	v1year(s) l 2025 yea)efer by 2 ar(s) to 2026	Defer by 3 year(s) to 2027	Defer by 4 year(s) to 2028	Defer by 5 year(s) to 2029	Defer by 6 year(s) to 20	Defer by 7 30 year(s) to 2031	Defer by 8 year(s) to 2032	Defer by 9 year(s) to 2033	Defer by 10 year(s) to 2034
0	Con	fig 1	Flexibili	ty under Best v	iew	£0	£16,096	£28,687	£39,395	£46,967	£51,59	6 £53,	467 £52,75	3 £49,621	£44,226	£36,718
-	Con	fig 2 Flexibility u	under Consun	ner Transformat	ion	£0	£17,604	£32,090	£40,685	£42,807	£37,42	7 £30,	257 £11,93	7 -£22,864	-£75,920	-£144,886
Σ	Con	fig 3	Flexibility (under Falling Sh	ort	£O	£31,178	£61,116	£88,312	£112,913	£134,79	6 £153,	B56 £169,76	4 £180,680	£187,143	£188,654
ΠŪ.	Con	fig 4 Fl	lexibility unde	er Leading the V	Vay	£0	£11,572	£15,270	£13,577	£6,027	-£7,65	0 -£29,	719 -£65,39	9 -£117,938	-£190,221	-£281,788
Ö	Con	fig 5 Flexibilit	ty under Syst	em Transformat	ion	£O	£20,621	£38,460	£53,396	£65,327	£74,30	2 £79,	229 £81,22	4 £79,520	£74,125	£65,504
•																
	1	А	В	С	D	E	F	G	Н	I	J	K	L	Scenario	High	est NPV
	1		Strategy_0	Strategy_1	Strategy_2	Strategy_3	Strategy_4	Strategy_5	Strategy_6	Strategy_7	Strategy_8	Strategy_9	Strategy_10			
	2	Best View	0.000	16.096	28.687	39.395	46.96	51.59	6 53.467	52.753	49.621	44.226	36.718	Best View	Stra	ntegy 6
σ	3	Consumer Transformation	0.000	17.604	32.090	40.685	42.80	37.42	7 30.257	11.937	-22.864	-75.920	-144.886			
	4	Falling short	0.000	31.178	61.116	88.312	112.913	134.79	6 153.856	i 169.764	180.680	187.143	188.654	Consumer	Churc	
	5	Leading the Way	0.000	11.572	15.270	13.577	6.02	7 -7.65	0 -29.719	-65.399	-117.938	-190.221	-281.788	transformatio	on Stra	itegy 4
5 5	6	System Transformation	0.000	20.621	38.460	53.395	65.32	7 74.30	2 79.229	81.224	79.520	74.125	65.504			
Σat	7	Weighted NPV	0.000	19.414	35.125	47.073	54.808	3 58.09	4 57.418	50.056	33.804	7.871	-27.160	Falling short	t Strat	tegy 10
d U U	8															
	9													Leading the w	'ay Stra	itegy 2
Ř	10															
	4.4													System	Stra	tegy 7
		< > Total NPV	Marginal	_NPV Resi	dual_NPV (Overall_NPV	Option val	ue NPV	NPV_LWR	Net_risk_NP 🚥	+ : ••			transformatio	on Stra	

• A similar comparison of results is performed over the **marginal benefits** of each 'deferral' strategy, calculated as the additional benefits from deferring reinforcement by an additional year.

CEM tool

			Baseline	1	2	3	4	5	6	7	8	9	10
		Marginal benefit of deferral (excluding		Defer from 2024	Defer from 2025	Defer from 2026	Defer from 2027	Defer from 2028	Defer from 2029	Defer from 2030	Defer from 2031	Defer from 2032	Defer from 2033
		benefit from further deferral)		to 2025	to 2026	to 2027	to 2028	to 2029	to 2030	to 2031	to 2032	to 2033	to 2034
Config	1	Flexibility under Best view	£O	£16,096	£12,591	£10,708	£7,572	£4,629	£1,871	-£714	-£3,132	-£5,394	-£7,508
Config	2	Flexibility under Consumer Transformation	£O	£17,604	£14,486	£8,594	£2,122	-£5,380	-£7,170	-£18,320	-£34,800	-£53,056	-£68,966
Config	3	Flexibility under Falling Short	£O	£31,178	£29,939	£27,196	£24,601	£21,883	£19,061	£15,908	£10,916	£6,464	£1,510
Config	- 4	Flexibility under Leading the Way	£O	£11,572	£3,698	-£1,693	-£7,550	-£13,678	-£22,069	-£35,680	-£52,539	-£72,282	-£91,567
Config	5	Flexibility under System Transformation	£O	£20,621	£17,839	£14,936	£11,931	£8,975	£4,927	£1,995	-£1,704	-£5,394	-£8,621

Re-platformed CEM tool

	А	В	С	D	E	F	G	Н	I	J	K	L
1		Strategy_0	Strategy_1	Strategy_2	Strategy_3	Strategy_4	Strategy_5	Strategy_6	Strategy_7	Strategy_8	Strategy_9	Strategy_10
2	Best View		16.096	12.591	10.708	7.572	4.629	1.871	-0.714	-3.132	-5.394	-7.508
3	Consumer Transformation		17.604	14.486	8.594	2.122	-5.380	-7.170	-18.320	-34.800	-53.056	-68.966
4	Falling short		31.178	29.939	27.196	24.601	21.883	19.061	15.908	10.916	6.464	1.510
5	Leading the Way		11.572	3.698	-1.693	-7.550	-13.678	-22.069	-35.680	-52.539	-72.282	-91.567
6	System Transformation		20.621	17.839	14.936	11.931	8.975	4.927	1.995	-1.704	-5.394	-8.621
8												
9												
10												
11												
12												
13												
4	> Total NPV	Marginal_	NPV Resid	lual_NPV C	overall_NPV	Option value	NPV N	PV_LWR Ne	t_risk_NPV_LW	R Losses N	PV L ····	+ : •••

• A similar comparison of results is performed over the **residual benefits** of each 'deferral' strategy.

CEM tool

			Baseline	1	2	3	4	5	6	7	8	9	10
	_	Residual benefit after initial deferral		Defer by 1 year(s) to 2025	Defer by 2 year(s) to 2026	Defer by 3 year(s) to 2027	Defer by 4 year(s) to 2028	Defer by 5 year(s) to 2029	Defer by 6 year(s) to 2030	Defer by 7 year(s) to 2031	Defer by 8 year(s) to 2032	Defer by 9 year(s) to 2033	Defer by 10 year(s) to 2034
Config	1	Flexibility under Best view	£O	£37,371	£24,780	£14,071	£6,500	£1,871	£0	£0	£0	£0	£0
Config	2	Flexibility under Consumer Transformation	£O	£25,203	£10,717	£2,122	£0	£0	£0	£0	£0	£0	£0
Config	3	Flexibility under Falling Short	£O	£157,476	£127,537	£100,341	£75,741	£53,858	£34,797	£18,890	£7,974	£1,510	£0
Config	4	Flexibility under Leading the Way	£O	£3,698	£0	£0	£0	£0	£0	£0	£0	£0	£0
Config	5	Flexibility under System Transformation	£0	£60,603	£42,764	£27,828	£15,897	£6,922	£1,995	£0	£0	£0	£0

Re-platformed CEM tool

	A	В	С	D	E	F	G	Н	I.	J	K	L
1		Strategy_0	Strategy_1	Strategy_2	Strategy_3	Strategy_4	Strategy_5	Strategy_6	Strategy_7	Strategy_8	Strategy_9	Strategy_10
2	Best View		37.371	24.780	14.071	6.500	1.871	0.000	0.000	0.000	0.000	0.000
3	Consumer Transformation		25.203	10.717	2.122	0.000	0.000	0.000	0.000	0.000	0.000	0.000
4	Falling short		157.476	127.537	100.341	75.741	53.858	34.797	18.890	7.974	1.510	0.000
5	Leading the Way		3.698	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
6	System Transformation		60.603	42.764	27.828	15.897	6.922	1.995	0.000	0.000	0.000	0.000
8												
9												
10												
11												
12												
13												
	< > Total NPV	Marginal_	NPV Resid	ual_NPV C	overall_NPV	NPV NPV	/_LWR Net	_risk_NPV_LW	R Losses N	PV Losses	••• + :	

• A similar comparison of results is performed over the **overall benefits** of each 'deferral' strategy.

CEM tool

			Baseline	1	2	3	4	5	6	7	8	9	10
	Overall benefit of strategy vs baseline (including benefit of further deferral and the multi-year discount)			Defer by 1 year(s) to 2025	Defer by 2 year(s) to 2026	Defer by 3 year(s) to 2027	Defer by 4 year(s) to 2028	Defer by 5 year(s) to 2029	Defer by 6 year(s) to 2030	Defer by 7 year(s) to 2031	Defer by 8 year(s) to 2032	Defer by 9 year(s) to 2033	Defer by 10 year(s) to 2034
Config	1	Flexibility under Best view	£C	£53,467	£53,467	£53,467	£53,467	£53,467	£53,467	£52,753	£49,621	£44,226	£36,718
Config	2	Flexibility under Consumer Transformation	£C	£42,807	£42,807	£42,807	£42,807	£37,427	£30,257	£11,937	-£22,864	-£75,920	-£144,886
Config	3	Flexibility under Falling Short	£C	£188,654	£188,654	£188,654	£188,654	£188,654	£188,654	£188,654	£188,654	£188,654	£188,654
Config	4	Flexibility under Leading the Way	£C	£15,270	£15,270	£13,577	£6,027	-£7,650	-£29,719	-£65,399	-£117,938	-£190,221	-£281,788
Config	5	Flexibility under System Transformation	£C	£81,224	£81,224	£81,224	£81,224	£81,224	£81,224	£81,224	£79,520	£74,125	£65,504

Re-platformed CEM tool

	А	В	С	D	E	F	G	Н	I.	J	К	L
1		Strategy_0	Strategy_1	Strategy_2	Strategy_3	Strategy_4	Strategy_5	Strategy_6	Strategy_7	Strategy_8	Strategy_9	Strategy_10
2	Best View		53.467	53.467	53.467	53.467	53.467	53.467	52.753	49.621	44.226	36.718
3	Consumer Transformation		42.807	42.807	42.807	42.807	37.427	30.257	11.937	-22.864	-75.920	-144.886
4	Falling short		188.654	188.654	188.654	188.654	188.654	188.654	188.654	188.654	188.654	188.654
5	Leading the Way		15.270	15.270	13.577	6.027	-7.650	-29.719	-65.399	-117.938	-190.221	-281.788
6	System Transformation		81.224	81.224	81.224	81.224	81.224	81.224	81.224	79.520	74.125	65.504
8												
9												
10												
11												
10												
	< > Total NPV	Marginal	_NPV Resid	dual_NPV	Overall_NPV	Option valu	e NPV	NPV_LWR	Net_risk_NP	••• + :	<	

• A function to calculate the option value (i.e. 'uncertainty value') is embedded in the Python-based tool. This is stored in the corresponding Excel tab for all strategy/scenario combinations, rather than manually selecting the scenario to visualise in cell D4 in the 'Additional inputs and control' tab in the original Excel CEM tool.

Option value: NPV at predetermined flexibility price

		CER	M 100l		Option value o	f Flexibility @ £	5/MVA					
	'Fal	ling sh	ort' scen	ario			Intrinsic benefit		Uncertain benefit	ty Total o bene	l otal option benefit	
					Flexibility			£188,6	54 -£112,	.369	£76,284	
Re-platformed CEM tool												
	А	В	С	D	Е	F	G	н	1	J	К	L
1		Strategy_0	Strategy_1	Strategy_2	Strategy_3	Strategy_4	Strategy_5	Strategy_6	Strategy_7	Strategy_8	Strategy_9	Strategy_10
2	Best View		22.818	22.818	22.818	22.818	22.818	22.818	23.531	26.664	32.058	39.566
3	Consumer Transformation		33.477	33.477	33.477	33.477	38.857	46.028	64.348	99.148	152.204	221.170
4	Falling short		-112.369	-112.369	-112.369	-112.369	-112.369	-112.369	-112.369	-112.369	-112.369	-112.369
5	Leading the Way		61.014	61.014	62.707	70.257	83.935	106.004	141.684	194.223	266.505	358.072
6	System Transformation		-4.939	-4.939	-4.939	-4.939	-4.939	-4.939	-4.939	-3.235	2.159	10.780
8												
9												
10												
11												
12												
<	> Total NPV	Marginal	NPV Residu	ial_NPV Ov	erall_NPV	Option value	NPV NPV	LWR Net_r	isk_NPV_LWR	Losses NPV	Loss •••	+ : ••

Results validation against CEM tool: Ceiling price Input data

- Finally, for the purpose of results validation, the re-platformed ROCBA tool is used to calculate, for all strategy/scenario combinations, the flexibility services ceiling price for a three-year flexibility initial contract (based on a 'Ramping' contract shape*).
- The screenshot below displays the input data required to run the macro for the ceiling price calculation in the Excel CEM tool. In this example, the availability/capacity price is incrementally changed as well as the utilisation price such that the ratio between the availability and utilisation prices remains constant (i.e. 'lock ratio' feature).

	New estimated run time (seconds):	85 104
Г	Drice upried for celling price cert ceck	Avertle bility (le els sette)
-	Price varied for certing price goal seek	Availability (lock ratio)
Ľ	Goal seek increment (£/MW/h or £/MWh)	1
	Maximum price from Simple Celling Price (E/MW/n or E/MWn)	£ 20
	Maximum price for goal seek (£/MW/h or £/MWh)	£ 85
	Initial availability price (£/MWh)	£ 5
	Initial utilisation price (£/MWh)	£ 10
	Select strategy:	Flexibility

Input data in CEM Excel-based tool

* See ENA's 'Common Evaluation Methodology and Tool' for more details.

Results validation against CEM tool: Ceiling price Output

CEM tool

Maximum justified availability price and annual cost of a 3 year flexibility contract

Configuration	Ceiling availability price (£/MW/h)	Ceiling utilisation price (£/MWh)	Average annual contract cost ceiling (£)
1 Flexibility under Best view	7	14	£30,333
2 Flexibility under Consumer Transformation	7	14	£29,848
3 Flexibility under Falling Short	23	46	£32,691
4 Flexibility under Leading the Way	5	10	£29,423
5 Flexibility under System Transformation	9	18	£31,512

Re-platformed CEM tool

	А	В	С	D
1		Ceiling price k£/MVA/year	Ceiling price k£/MWh/year	Average annual contract cost ceiling (k£
2	Strategy_1 under Best View scenario	0.008	0.016	31.200
3	Strategy_1 under Consumer Transformation scenario	0.009	0.018	32.760
4	Strategy_1 under Falling short scenario	0.025	0.05	32.500
5	Strategy_1 under Leading the Way scenario	0.007	0.014	32.760
6	Strategy_1 under System Transformation scenario	0.01	0.02	31.200
7	Strategy_2 under Best View scenario	0.008	0.016	33.280
8	Strategy_2 under Consumer Transformation scenario	0.008	0.016	30.888
9	Strategy_2 under Falling short scenario	0.025	0.05	32.825
10	Strategy_2 under Leading the Way scenario	0.006	0.012	32.058
11	Strategy_2 under System Transformation scenario	0.01	0.02	33.020
12	Strategy_3 under Best View scenario	0.007	0.014	30.333
13	Strategy_3 under Consumer Transformation scenario	0.007	0.014	29.848
14	Strategy_3 under Falling short scenario	0.023	0.046	32.691
15	Strategy_3 under Leading the Way scenario	0.005	0.01	29.423
16	Strategy_3 under System Transformation scenario	0.009	0.018	31.512
17	Strategy_4 under Best View scenario	0.007	0.014	31.850
18	Strategy_4 under Consumer Transformation scenario	0.007	0.014	33.306
19	Strategy_4 under Falling short scenario	0.021	0.042	32.624
20	Strategy_4 under Leading the Way scenario	0.005	0.01	32.175
21	Strategy_4 under System Transformation scenario	0.009	0.018	33.462

- The top table is a screenshot of the 'ceiling price' tab in the Excel-based CEM tool, whereas the bottom table shows the ceiling price results from the Python-based tool.
- While the screenshot only shows the results for the first 4 strategies, the results are generated for all 10 strategies assessed in this example for each scenario.

• From the comparison, it is evident that the calculated ceiling prices and the average annual contract cost ceiling are the same.

- Among the many outputs of the re-platformed tool, the results of the sensitivity analysis upon which the ceiling price calculation is based are also stored. This allows us to have better visibility of the calculations performed.
- Taking the 'Best View' and 'Falling short' scenarios as examples, the graphs display the results of the sensitivity analysis of NPC with respect to flexibility service availability/utilisation price. This allows us to identify the 'point' at which the NPC of the flexibility strategy equals and then exceeds the net present costs (NPC) of the baseline strategy.

- Enhancing the Real Options CBA (ROCBA) tool Executive summary
- Flexibility evaluation tools
 - A real options approach
 - ROCBA tool
 - CEM tool

• Enhancing the ROCBA tool

- Results validation against CEM tool
- Re-platformed CEM tool additional functionalities
- Example using the enhanced ROCBA tool

Example: Re-platformed CEM tool additional functionalities

- After demonstrating that the results of the Python-based and Excel-based CEM tool match, we also show the full range of capabilities of the new enhanced Python-based tool.
- Considering the same inputs as in the previous example, we now model the variations around peak demand growth of each macro-scenario using 100 microscenarios, instead of running a single simulation.
- To illustrate how the tool works and what kind of output information can be visualised, assessed and analysed, for the purpose of this example, we assume that:
 - The peak demand growth of the selected primary substation follows the trend in the graph on the right.
 - The initial capacity of the substation is 16 MVA and the reinforcement required is 10 MVA (to be able to meet the projected maximum demand under the 'Best View' scenario).

• With the tool, it is possible to assess the **probabilistic distribution** of **residual excess load (REL)** and **quantify** the **network physical risks of each strategy** across a set of scenarios. The REL, deployed as a measure of network risk, is evaluated as excess MVA (i.e. demand above available network capacity) across all years in the planning horizon.

- From the graph, we can see that the investment strategy of reinforcing the network based on the demand growth projection of the 'Best view' scenario can cope well with the variations associated with most scenarios.
- The volatility associated with the 'Best view' can potentially cause some instances in which capacity may not be sufficient. However, the residual excess load is contained and limited below 4%. On the other hand, the demand growth that could be experienced under the 'Consumer transformation' scenario, can lead to greater network risk with higher frequency.

Each bin represents the intervals/range of values into which the entire range of the data is split into. All the data points that fall within a particular bin are then counted and aggregated to determine the frequency. Frequency is defined as the number of instances in which the REL is above the value of each bin and lower than value of successive one.

- Enhancing the Real Options CBA (ROCBA) tool Executive summary
- Flexibility evaluation tools
 - A real options approach
 - ROCBA tool
 - CEM tool

• Enhancing the ROCBA tool

- Results validation against CEM tool
- Re-platformed CEM tool additional functionalities
- Example using the enhanced ROCBA tool

Load growth-triggered intervention activation

- After demonstrating that the results of the Python-based and Excel-based CEM tool match, we now show the full range of capabilities of the new enhanced Python-based ROCBA tool.
- To illustrate how the tool works and what kind of output information can be visualised, assessed and analysed, we evaluate an investment decision using five scenarios for peak demand growth and comparing three different investment strategies with a 'baseline' strategy. Each strategy is a combination of flexibility services ('Flex') and network asset reinforcement/replacement ('Reinf') intervention types.
- For the purpose of this example, the selected site corresponds to a primary substation.
- A summary of the strategies under analysis is reported in the table in the following slide. In the case of traditional network reinforcement intervention, the additional capacity is reported in brackets.
- With respect to flexibility service procurement, only availability payments are made, and the amount of flexible capacity required is automatically calculated by the tool in accordance with peak demand growth and asset loading threshold.
- In this example, availability payments are set to £200/MW.

Example: Tool inputs

• The peak demand growth of the selected primary substation follows the trend in the graph below, and its volatility is set to 0.3%. Further 'shorter-term' uncertainty is accounted for through a weather-related volatility of 2.46%.

- In this illustrative example, costs associated with losses are disregarded.
- All scenarios are assumed equally probable (20%).

Strategy	Intervention 1	Intervention 2	Intervention 3
Baseline	Reinf (+18 MVA)	-	-
1	Flex	Reinf (+18 MVA)	-
2	Reinf (+8 MVA)	Reinf (+10 MVA)	-
3	Reinf (+10 MVA)	Flex	Reinf (+8 MVA)

Example: New available capacity by scenario

 The tool allows us to analyse network capacity across the years, depending on which intervention and when this is activated in each scenario for each strategy. Because of different expected evolution of demand growth, network investments are triggered at different stages.

• These graphs are for the zerovolatility Monte Carlo simulation.

	Strategy	Intervention 1	Intervention 2	Intervention 3				
	Baseline	Reinf (+18 MVA)	-	-				
	1	Flex	Reinf (+18 MVA)	-				
	2	Reinf (+8 MVA)	Reinf (+10 MVA)	-				
	3	Reinf (+10 MVA)	Flex	Reinf (+8 MVA)				
	- Fallir	ng short	Consu	mer Transformatio				
	Rest	View	Leadir	Leading the Way				
	Oust		- Initial					
		em iransformatio	n 🗕 – Initial	 Initial firm capacity 				

Example: New available capacity under each strategy

• Depending on the demand growth evolution, with a specific strategy, certain interventions may or may not be triggered.

Consumer Transformation scenario

- The tool enables us to perform an NPV analysis, by comparing the net present costs (NPC) of the baseline with the NPC of all other strategies in each scenario.
- Relative to the Baseline strategy, all the other three strategies have lower costs in all scenarios, i.e. positive NPV. When
 combining the outcomes across all scenarios through a weighted-average NPV, Strategy 1 is the best option from a
 financial point of view.

Example: Least-worst regret (LWR) analysis

- The selection of Strategy 1 as the preferred option, is further demonstrated through a **least-worst regret analysis** based on the NPC of each strategy in absolute terms.
- As Strategy 1 shows the lowest NPC (i.e. highest NPV) in *all* scenarios, the financial regret is calculated with respect to Strategy 1's NPC. Then all the strategies can be ranked from a **financial risk point of view**.
- As a result, the Baseline strategy shows the highest maximum regret as it involves the biggest reinforcement investment without any flexibility deferral/gradual network interventions as proposed in the other strategies.
- The tool allows the financial risks of each strategy to be quantified across a set of scenarios.

Example: LWR analysis of physical network risk

- When adopting a **physical network risk perspective**, the Baseline strategy, which appeared as the 'worst' option from a financial perspective, is in fact the least risky one.
- With a single large network reinforcement investment, this strategy better deals with peak demand volatility, and it is therefore less sensitive compared to other strategies, particularly strategy 1 given the uncertainty of flexibility procurement.
- The tool also allows us to **quantify** the **network physical risks of each strategy** across a set of scenarios.

*Network risk evaluated as MVA excess (demand above available network capacity) across all years in the planning horizon (averaged across Monte Carlo simulations), i.e. residual excess load.

Example: Distribution of costs and network risk (1/3)

- The tool enables us to assess the **probabilistic distribution** of **future costs** of each strategy along with the overall scenario probability-weighted distribution of future costs for each strategy.
- Each bin represents the intervals/range of values into which the entire range of the data is split.
- All the data points that fall within a particular bin are then counted and aggregated to determine the frequency.
- Frequency is defined as the number of instances in which the NPC is above the value of each bin and lower than the value of the successive one.

■ Best View ■ Leading the Way ■ Falling short ■ Consumer Transformation ■ System Transformation

Example: Distribution of costs and network risk (2/3)

The tool allows us to assess the **probabilistic** distribution of residual excess load of each strategy.

1.5

1.0

Frequency is defined as the number of instances in which the residual excess load (REL) is above the value of each bin and lower than value of successive one.

Example: Distribution of costs and network risk (3/3)

- By analysing the probabilistic distribution of future costs and residual excess load, it is possible to have a better understanding of both financial and network physical risk of all strategies under each scenario, quantified through the VaR and corresponding CVaR (after choosing a confidence level). These could be combined with each scenario probability.
- In this illustrative example, Strategy 1 and the Baseline strategy are the best options respectively from a financial and network risk perspective.

Network physical risk analysis

Confidence level: 95%

- ROCBA/CEM tool Python scripts will be made available to download from our website and shared with other DSOs.
 - This is to encourage other DSOs to use, review and provide feedback on it.
 - ENWL is available to hold briefings and training sessions to disseminate knowledge.

- No change in transparency commitment.
 - ENWL will continue to publish results of evaluations.

- J. A. Schachter, P. Mancarella, J. Moriarty, R. Shaw, 'Flexible investment under uncertainty in smart distribution networks with demand side response: Assessment framework and practical implementation', *Energy Policy*, 2016.
- P. Mancarella, J. Moriarty, 'Flexible investment strategies in distribution networks with DSR: Real Options modelling and tool architecture', 2013.
- C. Kaloudas, R. Shaw, 'Prototype Real Options Model: Tool Description Part of the Network Innovation Allowance' Project 'Demand Scenarios with Electric Heat and Commercial Capacity Options' December 2016.
- ENA, 'Common Evaluation Methodology and Tool', 2023.

Annex I: Re-platformed ROCBA tool input data

Intervention 'object': Technical parameters

- Name
- **Type**, i.e. flexibility or network asset (reinforcement/replacement).
- Capacity (MVA), i.e. additional capacity for traditional network asset reinforcement/replacement.
- Year completed, i.e. first year in which the intervention is active, for example year 2026. If not known or if interventions are triggered by demand growth, this is set to zero.
- Year stop, i.e. year in which the intervention is no longer active, for example year 2036. If not known or if interventions are triggered by demand growth, this is set to zero.
- **Trigger level** (%): asset loading threshold above which the intervention is activated*.
- Lead time (years).
- Embedded emissions, associated with the component itself and its transportation (tCO2e).
- **Losses parameters**, e.g. fixed losses and peak resistive losses after intervention (MW), loss load factor, etc. to calculate losses based on what/when each intervention is active, unless provided as inputs in separate file.

* Tipping points may be deterministic (i.e. occurring at user-defined years) or triggered if and when peak demand reaches a certain level.

Intervention 'object': Flexibility service parameters

- Maximum customer flexibility total availability (MVA), accounting for additional purchase for customer diversity.
- Average size of contract per customer (MVA)
- Uncertainty around flexibility availability at the time of delivery (%)
- Proportion of HV/LV customers providing capacity (%)
- Minimum flexibility contract length (years)
- Flexibility contract type, i.e. 'Flat' or 'Ramping' to define capacity to be procured (in accordance with CEM tool).

Intervention 'object': Financial parameters

- Network investment cost (£): Costs associated with traditional reinforcement.
- Spread of network investment costs (%): It is possible to 'spread' the total investment cost between 'commitment' and 'delivery' years.
- Asset life, used to calculate depreciation (years).
- Cost parameters for flexibility services, including:
 - Network automation costs (to allow flexibility provision) (£)
 - Flexibility service contract set-up cost (£/customer)
 - Flexibility availability and utilisation payment (£/MVA/customer and £/MWh/customer)
 - Multi-year flexibility service contract price discounts (%)
 - Ongoing costs (i.e. remittances, automation maintenance, contract management) (£/year)

Strategy 'object'

It is defined by the following parameters:

- Name
- Sequence of intervention names, selected from a 'database' of interventions available*. The order in which each intervention is listed also reflects the temporal order in which each intervention may be triggered. For instance, if 'Strategy A' consists of three interventions, i.e. FLEX_1, NET_1 and FLEX_2, this means that intervention NET_1 can be activated only if and after FLEX_1 is triggered.
- Number of fatal/non-fatal injuries
- CMLs
- Number of CIs

^{*} Each intervention name in the database is unique.

Site 'object'

It is defined, for each scenario, by the following parameters:

• **Name:** It is possible to define as many sites as needed. For example a site can be a substation.

Site

Strategy

Intervention

- Initial firm capacity (MVA)
- **Demand growth trends** (MVA), from base year up to final year depending on the planning horizon. These may be used to trigger a specific intervention.
- Scenario probability weight (%)
- **Volatility (%)** used to simulate short-term uncertainty around the long-term trend of each scenario through Monte Carlo simulations.
- Sequence of strategies to be assessed.

- Weather-related volatility (%): Used to incorporate short-term uncertainty around long-term trends of each scenario for each Monte Carlo simulation.
- Specific **parameters for losses calculation** before any intervention (e.g. fixed losses (MW), loss load factor, latent demand at peak (MW), etc.)
- **Financial views**: to capture different perspectives on costs, for example, DNO commercial (i.e. analysis performed across a five-year horizon) vs regulatory perspective (i.e. analysis performed across a 45-year horizon as in Ofgem's CBA model).
- **Financial parameters**: discount rates (%), planning horizon (years), totex treatment (%), flag to include social costs (e.g. losses, CIs, CMLs, emissions, etc.). These change based on selected 'view'.
- Additional **financial/cost parameters**: e.g. capitalisation rate (%), pre-tax WACC (%), cost per fatality, cost per non-fatal injury, cost per litre oil, cost per CI, CML.
- 'Best view' scenario
- **'Baseline' strategy:** Benefits of a selected strategy are calculated with respect to baseline's net present costs.

