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1. Executive Summary 

This report presents the findings from the Alpha phase of the SIF RetroMeter project, 

which aims to develop a robust methodology for quantifying the energy savings from 

heating-related retrofits (like insulation and improved heating systems) in UK homes. 

Accurately measuring these savings, known as Metered Energy Savings (MES), is crucial for 

building trust in retrofits, enabling new financing options, and supporting grid planning. 

However, it is challenging to measure savings in a way that accounts for variations in 

weather, energy prices, and occupant behaviour. The project focused on the most common 

retrofit use case in the UK - fabric upgrades to homes with gas heating pre-intervention. It 

evaluated three core methodologies: 

• OpenEEmeter, an open-source implementation of the CalTRACK method, which 

uses weather data and statistical models to predict a home's energy use in the 

absence of a retrofit, against which their actual metered consumption can be 

compared.  

• Comparator groups, where the predictions are adjusted based on the consumption 

patterns of similar homes that did not receive a retrofit, to account for non-weather 

externalities (like energy prices) that OpenEEmeter cannot capture. 

• Physics-based modelling, to estimate the portion of savings that may be taken back 

as increased comfort rather than bill savings. This part of the methodology in 

particular incorporates the work by the Smart Meter Enabled Thermal Efficiency 

Ratings (SMETER) project. 

The first two methodologies were tested on smart meter data from approximately 3,000 

homes, with the physics-based methodology tested on 15 homes from the SMETER 

project. Key findings were: 

• OpenEEmeter alone was not sufficiently accurate, largely due to its inability to 

account for the sharp increase in energy prices experienced in the winter of 

2022/23, and the resulting behaviour changes during the energy crisis. It 

systematically overestimated consumption in the post-retrofit period. 

• Using comparator groups eliminated OpenEEMeter’s systematic over-prediction and 

greatly improved accuracy, especially when comparators were matched based on 

the similarity of their energy consumption profiles. Grouping candidate homes into 

portfolios of as few as 5 homes brought accuracy within industry guidelines. Further 

collaboration with the Smart Energy Research Lab (SERL) and Hildebrand was 

explored for maintaining these comparison groups over intervention periods. 

• The physics-based approach shows some promise for estimating comfort take-back 

when aggregated to larger portfolios, though further validation is needed. A better 

understanding of how the availability of smart meter and internal temperature data 

affects HTC and energy demand estimation performance was attained. The 

approach developed in this Alpha phase project will complement and help 

springboard further work alongside the conclusions of SMETER to UK-centric 

efficiency modelling.   
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The work has made a significant step forward by demonstrating that the RetroMeter 

methodologies provide a suitably robust foundation for assessing energy savings from 

small groups of homes in the UK. Focus now needs to shift to creating the conditions for 

large scale adoption, which include: 

• Establishing a mechanism for ongoing access to smart meter data for comparison 

groups. 

• Testing the effectiveness of comfort takeback estimates on a larger group of homes. 

• Turning the methodology into an open standard and open-source software tool 

that are easy to apply. 

• Creating regulatory incentives to encourage the use of MES in publicly funded 

retrofit programmes. 
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2. Approaches to Measuring Metered Energy Savings 

This section introduces the concept of Metered Energy Savings (MES), and ties in the 

conclusions of the Discovery report that were taken forward in this Alpha phase part of the 

RetroMeter project. Section 2.4 will briefly overview the methodology discussed in the 

Discovery phase report and highlight any changes that have been made during Alpha. 

2.1 What are Metered Energy Savings? 

As the UK continues to progress towards reducing its carbon emissions and increasing 

domestic energy efficiency, it is becoming more and more important for homeowners to 

upgrade their properties with retrofits including improved insulation, more efficient 

heating systems, and solar panels. However, it can be challenging to accurately measure 

how much energy and money these upgrades actually save the homeowner, once you 

factor in variations in weather, energy prices, and behavioural changes. This is where the 

concept of MES comes in. 

MES refers to the process of calculating the financial, carbon, and energy savings 

attributable to a heating-related retrofit in a home, resulting from energy efficiency 

upgrades or retrofits to the property. Rather than relying on estimates or averages, MES 

aims to calculate the actual energy saved by comparing the home's energy usage before 

and after the upgrades, controlling for other variables that may distort the true impact of 

the retrofit. There are several key reasons why accurately measuring MES is valuable both 

for the occupier and the wider energy system: 

• MES allows households to verify that the upgrades they paid for are delivering the 

promised savings on their energy bills. This builds trust and confidence in retrofits 

as a mechanism to lower bills. 

• Quantifying the savings makes it easier to invest in upgrades through financing 

options where the upfront costs are paid back over time from the monthly energy 

savings. 

• Utilities and grid operators can use MES data to understand the impacts of 

efficiency programs and factor them into their demand forecasting and grid 

planning. 

• Proven energy savings create a financial value that can potentially be monetised 

through energy efficiency incentive programs or carbon credit markets. 

At its core, accurately measuring MES for a property requires creating a ‘counterfactual’ – a 

projection of how much energy the home would have used without had the retrofit not 

occurred, accounting for all the main factors that might influence the home’s energy 

consumption. The methods for generating these counterfactual predictions need to be 

robust to the availability of data from the property, particularly in cases where the 

proportion of missing data is high. In addition, they must also try to account for changes in 

occupant behaviour such as ‘comfort take-back’, where occupiers set the internal 

temperatures higher after insulation upgrades in response to their newly increased heat 

retention. 
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2.2 Use Cases 

The Discovery report introduced several use cases for MES, including important but 

currently niche situations where full gas to electric heating conversions take place 

alongside fabric retrofits with Time of Use (ToU) tariffs. It was concluded that the Alpha 

phase would focus on modelling gas-heated homes rather than electric, specifically 

targeting use case 1 (gas heated home, fabric retrofit only). This is primarily due to: 

• Prevalence: The majority of UK homes are currently gas heated, making this the 

most common and impactful use case to address initially and establish the 

RetroMeter methodology across the largest pool of possible users. 

• Simplicity: Gas prices are not dependent on time of use, eliminating the need to 

develop a more complex and less reliable half-hourly model. Daily or monthly 

models are sufficient for gas, which simplifies the methodology development and 

improves accuracy. 

• Data availability: Requiring internal temperature data for a year pre-retrofit poses a 

significant barrier to widespread adoption. By focusing on gas and utilising smart 

meter data (available for around half of homes in the UK), the methodology can be 

more easily implemented and scaled. 

Concentrating on this use case allows for the development of a broadly applicable 

methodology that is effective for the most common heating configuration in the UK. This 

approach simplifies the initial development process while still enabling the methodology 

to be extended to other use cases in the future as needed. The goal is to create a strong, 

verified methodology that can be built upon and adapted rather than attempting to devise 

a one-size-fits-all solution from the outset. 

2.3 Existing Approaches and Limitations 

A comprehensive overview of the MES landscape can be found in Metered Energy Savings 

20221 and the Discovery phase report. A summary is provided here for information. 

Historically, expected energy savings from building upgrades have been calculated using 

physics-based modelling approaches like RdSAP in the UK, implemented by building 

engineers at the point of retrofit install. This single static prediction however is not verified 

post-install using actual energy consumption readings, limiting its use as a rolling MES 

measure. MES approaches based on smart meter data aim to compare actual metered 

energy use before and after an intervention to quantify the savings, assuming other 

variables like occupancy and behaviour remain unchanged. These include: 

• CalTRACK – Developed primarily for portfolios of commercial buildings, it uses a 

series of interpretable linear model based on heating/cooling degree days and time 

of week, requiring 12 months of pre-intervention consumption and external 

temperature data at daily, hourly, or monthly granularity. The open-source 

implementation of the CalTRACK standards, OpenEEmeter, is the core 

 

1 Young et al. (2022) 



 

5 es.catapult.org.uk 

counterfactual model used in this project. The methodology was developed in the 

US by Recurve, and is currently maintained by the LF Energy. 

• SENSEI – Similar to CalTRACK, aims to identify more distinct building operating 

states to better model occupancy variations, but requires hourly energy usage, 

external temperature, and other manually defined features including occupancy. It 

uses somewhat more complex gradient-boosted decision trees, offering less 

interpretability than CalTRACK. SENSEI was tested alongside OpenEEmeter in 

Metered Energy Savings 2022 and found to offer limited upside for significantly 

more technical difficulty. 

• The Great Energy Predictor III competition on Kaggle also compared various 

modelling approaches. Top performers used large ensembles of models, especially 

gradient boosted trees. Careful data pre-processing to handle missing data and 

anomalies was also found to be critical – while not a significant barrier to 

deployment, the lack of standardisation in domestic energy data means that this is a 

mostly manual process.  

2.4 The RetroMeter Approach 

A basic approach to metered energy savings might be to simply look at a household’s pre-

retrofit energy use and compare it to a household’s post-retrofit energy use. However, this 

does not account for the fact that the winter after the retrofit might be colder or warmer 

than the winter before it.  

2.4.1 Adjusting for Weather 

OpenEEmeter accounts for the impact of weather on energy consumption using mean 

hourly external temperature and metered energy consumption in the pre-retrofit ‘baseline’ 

period to fit regression models that also account for seasonal and other calendar effects. 

RetroMeter employs the ‘daily’ version of OpenEEmeter, generating a counterfactual each 

day for what the energy use would have been given the weather conditions. More detail on 

this approach is given in Section 4.1. 

2.4.2 Adjusting for Society-Wide Factors 

OpenEEmeter alone is incapable of accounting for society-wide factors that can influence 

energy use, for example: energy price changes causing people to cut back on their 

consumption, or changes to home heating practices during COVID lockdowns. These make 

simple before-and-after comparisons based on weather alone inaccurate for measuring 

MES. 

The comparator methodology builds further on OpenEEmeter by comparing the energy 

use in the ‘candidate’ household post-retrofit, to energy use in the same period for similar 

households which have not had a retrofit. This can help separate out the energy changes 

due to retrofit from the energy changes happening in society more broadly. How these 

‘comparator’ households are matched to the candidate is a key driver of how effective the 

modelling approach is, and this project investigated several approaches based on the 

availability of smart meter data prior to the retrofit. 
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2.4.3 Adjusting for Household Behaviour 

Lastly, households may decide to keep their home at a warmer temperature after the 

retrofit than before the retrofit, because it cost them less to warm their home after the 

retrofit. One way to account for this comfort take-back is to take the observed post-retrofit 

internal temperatures and apply them to a physics-based model of the house pre-retrofit 

to calculate what the energy demand would have been.  

This requires the use of a heat transfer coefficient (HTC), which is a measure of the rate at 

which the heat generated in a home is typically lost through leakage, with the pre-retrofit 

HTC estimated by correlating the pre-retrofit weather with the pre-retrofit gas usage. 

This model focuses on gas usage, but requires additional data on things that influence 

heat generation and loss in a home. For example, it assumes that a certain proportion of 

electricity usage generates heat in the home indirectly, including through electric cooking 

and kitchen appliances, electronics, and lights. The model factors in heating from the sun, 

estimated using weather data including the external temperature and the solar irradiance. 

The model also accounts for baseload gas usage, defined as the gas used for purposes 

other than space heating such as domestic hot water and cooking. 

2.4.4 Performance Metrics 

The metrics used to assess the efficacy of the counterfactual models have been introduced 

in the Discovery report and are repeated here for reference. The Normalized Mean Bias 

Error (NMBE) and the Coefficient of Variation of the Root Mean Square Error (CVRMSE) are 

recommended by ASHRAE (American Society of Heating, Refrigerating and Air-

Conditioning Engineers) for evaluating MES modelling. 

The NMBE measures whether the model consistently over- or under-predicts energy use – 

in other words, if there is a systematic bias. Positive and negative errors can cancel out, so 

NMBE alone is not sufficient to evaluate accuracy. It is defined as: 

𝑁𝑀𝐵𝐸 =  
∑(𝑦�̂� − 𝑦𝑖)

𝑛 − 1
�̅�⁄  

The CVRMSE measures the size of prediction errors regardless of whether the model is 

over- or under-predicting. Prediction errors are squared, so larger errors are penalized 

more than small ones. CVRMSE normalizes the error by the mean observed energy usage: 

𝐶𝑉𝑅𝑀𝑆𝐸 =  √
∑(𝑦𝑖 − 𝑦�̂�)2

𝑛 − 1
�̅�⁄  

where 𝑦𝑖 is the observed energy use at time 𝑖, 𝑦�̂� is the predicted energy use, 𝑛 is the 

number of time intervals, and �̅� is the mean observed usage. The lower the CVRMSE, the 

higher the accuracy. 

Figure 1 helps to visualise the difference between the two metrics as the balance between 

bias and variance, similar to the distinction made between accuracy and precision. 
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Figure 1 - Visualising what CVRMSE and NMBE are measuring - the balance between accuracy and precision. 

The CVRMSE cannot be negative, but as NMBE can represent both systematic over- and 

under-prediction, the objective is to bring both metrics as close to zero as possible. The 

following sections will demonstrate that in general, a higher CVRMSE implies a higher 

NMBE, and vice versa.  

2.5 Aims and Objectives 

Work Package Two of the RetroMeter Alpha phase is focused on establishing whether an 

open MES methodology can be applied in a UK domestic gas-heating environment. By 

testing the RetroMeter approach described in this section on a large enough sample of 

properties, we intend to produce results with statistical significance that can then be used 

to inform the scaling up of the method to real-world retrofit MES projects. 

We will not only be looking at the raw performance metrics, but also the feasibility of 

applying the RetroMeter approach to houses in an array of circumstances, including where 

no smart data is available for comparison groups prior to retrofit, where a heat pump 

installation is part of the intervention, or where no internal temperature measurements are 

available. We hope to lay the groundwork for a standardised, industry-wide approach to 

MES in the UK.  
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3. Smart Meter Dataset Analysis 

Acquiring residential smart meter data in the UK is hard. Governance, privacy concerns, 

siloing, and in some cases strict sandboxing can limit the extent to which research projects 

such as this can reach the scale necessary to produce statistically significant results. 

Fortunately, the Catapult was able to engage with Hildebrand, a leading energy analytics 

provider, to procure a dataset of over 16,000 properties with half-hourly gas smart meter 

readings for this analysis. For the more detailed requirements of the physics-based 

methodology, the Catapult leveraged data published by the SMETER programme for highly 

granular data including internal temperature. 

This section introduces these datasets and outlines their attributes, how they were cleaned, 

and a breakdown of their quality metrics. 

3.1 Smart Meter Dataset Attributes 

The set of gas smart meter data contains 16,759 anonymised properties, each with half-

hourly gas consumption readings in kWh with varying start dates, all ending at the start of 

September 2023. Each property is matched to its nearest public weather station from 

which we acquire hourly external temperature readings in Celsius for the duration of the 

time that the property has valid meter readings. Across the full dataset, there are 58 unique 

weather stations with a fairly even distribution over England. It was evident that there was 

a moderate class imbalance across the stations, with several matching a disproportionate 

number of properties compared to others, although without an indication of how close 

each property is to their nearest station, it is not possible to tell from this alone whether it 

will impact the sampling in any meaningful way.  

Each property was also provided with basic information about the building, summarised in 

Table 1 below. The totals for each characteristic may not sum exactly to the total number 

of properties in the dataset due to missing values. Given that 21.7% of UK households 

occupy a flat or maisonette2, this dataset appears to under-represent flats, alongside 

modern properties built within the last twenty years. However, given that older houses are 

more likely to be the ones needing retrofits, this under-representation is less important. 

 

 

 

 

 

 

 

 

2 ONS Census 2021 
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Table 1 - Summary of smart meter dataset property metadata. 

CHARACTERISTIC VALUE COUNT 

Current EPC Rating 

A 37 

B 944 

C 4582 

D 8019 

E 2656 

F 442 

G 79 

Potential EPC Rating 

A 449 

B 8141 

C 6359 

D 1487 

E 274 

F 33 

G 16 

Property Type 

House 14430 

Bungalow 1282 

Flat 887 

Maisonette 160 

Built Form 

Detached 6179 

Semi-Detached 5728 

Mid-Terrace 2936 

End-Terrace 1739 

Main Heating Source 
Boiler heating, mains gas 16,161 

Other (electric, oil, storage) 598 

Property Age Band 

pre-1900 1109 

1900-1929 2029 

1930-1949 2617 

1950-1966 2800 

1967-1975 2035 

1976-1982 1019 

1983-1990 1326 

1991-2002 1912 

2003-2006 676 

2007+ 319 
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Another important factor is the number of contiguous days of readings available per 

property. The OpenEEmeter methodology requires at least two years of readings to 

conform with the CalTRACK standard – one year for the baseline period, and one year for 

the reporting period. As such, many of the properties in the dataset cannot be used for the 

RetroMeter methodology as they started recording their gas usage too late to be included. 

Since Hildebrand have an increasing number of homes in their database, more properties 

would be available with enough readings to be usable by OpenEEmeter if this project were 

to be extended in the future. 

 

3.2 Data Quality and Cleaning Process 

The CalTRACK standards3 stipulate a minimum level of smart meter data quality for the 

counterfactuals to be reliable in practical applications. The most important requirements 

for RetroMeter are: 

• All meter readings must be positive, with duplicate timestamps rendered as the 

average of both (or more) readings. 

• The number of missing days in the baseline period should not exceed 10%, or 37 

days for a typical 365-day year. 

• Values of 0 are considered missing for electricity data, but not for gas. 

• When aggregating granular readings up to daily, no more than 50% of values can 

be missing, i.e. in one day of 48 half-hourly readings, no more than 24 can be 

missing. These missing values can be infilled using the average consumption over 

the non-missing periods. For gas smart meter data, where it is normal to have many 

half-hour periods with zero consumption, this requirement can be stringent. We 

have assumed that periods of zero consumption that last longer than a month 

constitute missing readings. 

• Hourly temperature data may not be missing for more than six consecutive periods, 

otherwise the day is treated as a missing day. Any fewer can be linearly interpolated.  

• Extreme values should be flagged for review if greater than three interquartile 

ranges above the median. For this project, we have chosen to cap these using 

windsorisation. 

After applying each of these requirements, the original dataset of 16,759 homes was 

reduced down to 3,048, according to the conditions outlined on the x-axis in Figure 2.   

 

3 https://docs.caltrack.org/en/latest/methods.html  
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Figure 2 - Causes of property removal from the original dataset to the final number successfully processed. 

Figure 3 outlines the proportion of periods affected by each of the four key CalTRACK 

sufficiency criteria, for the number of properties on the y-axis, applied cumulatively in the 

order presented in the legend. Despite the number of properties that needed to be 

excluded from the dataset due to having fewer than the complete two years of data 

necessary for a full baseline and reporting period, relatively few properties needed to be 

excluded on the grounds of the sufficiency criteria.  

 

Figure 3 - Proportion of half-hourly or daily periods over all properties affected by CalTRACK data sufficiency criteria. 
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3.3 Property Data Used for the Physics-Based Model 

To develop the physics-based model required data from homes that included internal 

temperature, co-heating Heat Transfer Coefficient measurements, and solar irradiance. 

Data from 15 homes that were part of the Smart Meter Enabled Thermal Efficiency Ratings 

(SMETER) project was used to develop the model (Allinson, et al., 2022). 

Data from an additional 15 homes from the same project was due to be published in 

January 2024 and so the RetroMeter project intended to use that data to validate the 

physics-based model to ensure it was not over-fitted to the first 15 homes. Unfortunately 

delays to publication of that data meant that validation of the results has not been 

possible, and therefore the physics-based model may not generalise well to all homes. 
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4. Applying OpenEEmeter to Individual Properties 

A naïve approach to creating a counterfactual energy usage post-retrofit would be to use 

the energy consumption profile from the year before. If it’s colder, however, the household 

would likely have used more energy to compensate – so a more sophisticated method is 

needed to adjust for the range of reactions households will have to changes in 

temperature. OpenEEmeter is designed to tackle this challenge.  

4.1 How OpenEEmeter Works 

OpenEEmeter is an open-source Python package developed by Recurve, now maintained 

by the LF Energy, that provides an implementation of the CalTRACK MES methodology. For 

RetroMeter, we have used version 4.0.0a2, a pre-release available from the start of the 

project that benefits from many improvements to the daily model made over version 3. To 

preserve the comparability and transferability of this project’s results, we have ensured that 

no material changes were made to the OpenEEmeter package and that the CalTRACK data 

sufficiency requirements were fully adhered to. More information on these requirements 

can be found in the technical annex. 

The OpenEEmeter daily method relies on a set of linear models with three energy use 

regimes: heating, cooling, and baseload, which are fitted to the baseline year’s temperature 

and energy consumption data. The CalTRACK methods attempt to identify external 

temperatures at which heating and cooling begin to be required in the home, known as 

heating and cooling balance point temperatures. For RetroMeter, where only gas heating is 

considered, there will never be any energy demand for cooling, so only the heating model 

and balance points are considered. 

 

 

Figure 4 - OpenEEmeter fitted to a single property baseline year (in blue), with predicted consumption for the reporting 

period (in red) 

The predicted energy demand each day is regressed on the total difference between the 

external temperature and the balance point temperature over the course of a day (this is 

referred to as heating degree days). OpenEEmeter will fit the best model from a range of 

candidates to each season of the year, divided into winter, summer, and ‘shoulder’ for 
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spring and autumn, but does not account for comfort take-back, external factors, or 

changes in occupancy patterns. 

For the reporting period, the fitted model will then predict the consumption given the 

hourly temperature readings for each day of interest. Figure 4 illustrates what this looks 

like for an example property that has not changed its behaviour much in the reporting 

period compared to the baseline period – this can be seen by how well the modelled and 

observed consumption values in the reporting period align, indicating that this property 

has a predictable response to external temperature without much influence from other 

factors. 

A particular strength of OpenEEmeter is that it does not require a year of internal 

temperature readings prior to the retrofit, only external temperature readings that can be 

acquired easily from publicly available weather station data streams. Providing the 

property has had a functioning smart meter for at least a year prior to retrofit, the most 

recent 13 months of consumption data can be extracted to fit the baseline model, with 

evaluation performed on a rolling basis after the installation period is complete.   

As there are no interventions performed on properties within our dataset during the 

testing period, the expected MES is zero. Therefore, minimising the prediction error and 

bias of the counterfactual is the metric against which OpenEEmeter will be assessed. 

Additionally, in practice a retrofit can take weeks and sometimes months the complete; this 

is referred to as a ‘blackout period’, and is typically ignored in real metered energy savings 

applications, with the baseline period ending at the point where works begin, and the 

reporting period commencing once they are finished. For the purposes of this study, the 

blackout period is assumed negligible – the reporting period begins as soon as the 

baseline period ends. 

4.2 Principal Results 

As described in Section 3, the properties with sufficient data for a full year of baseline and 

reporting period testing spanned the winters of 2021/22 and 2022/23. The winters are the 

most important part of the year as this is where the majority of a property’s heating 

demand will occur. Figure 5 describes the mean temperature over the baseline and 

reporting winter periods, where it can be seen that during the reporting period, most 

months were colder than the baseline period. This suggests that, all else being equal, 

OpenEEmeter should predict that the average property consumes more energy during the 

reporting period than the baseline period. 
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Figure 5 - Mean monthly winter temperature over the baseline and reporting period. 

However, the winter of 2022/23 also saw a significant spike in the price of gas, as shown in 

Figure 6 using an index tracking the real-terms gas price normalised to 2010, which proved 

to be a stronger external factor than the lower temperatures on domestic consumption 

habits, resulting in lower mean consumption. We therefore expected OpenEEmeter to 

overestimate the reporting period consumption, as it is only capable of incorporating the 

external temperature and not the gas price increase. 

 

 

Figure 6 - Mean winter baseline/reporting period measured gas consumption and domestic gas retail price index. 

Figure 7 presents the results of fitting the OpenEEmeter daily model to all 3,048 properties 

with at least two years of contiguous gas meter readings. Alongside, we have also 

presented the results from Metered Energy Savings 2022 for comparison, where version 3 

of the OpenEEmeter daily model was applied to 42 homes with gas smart meter readings 

across a range of years prior to 2022. The blue (hourly) and green (monthly) lines indicate 

the ASHRAE criteria (Guideline 14-2014, Measurement of Energy and Demand Savings) for 
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a modelled counterfactual to be sufficiently accurate that the difference observed between 

the counterfactual and the post-intervention actual metered values can reasonably be 

attributed to the intervention, rather than error in the model. These are: 

“The computer model shall have an NMBE of 5% and a CV(RMSE) of 15% relative to monthly 

calibration data. If hourly calibration data are used, these requirements shall be 10% and 

30% respectively.” 

In the absence of a defined acceptable daily error, we assume it should fall between the 

30% and 15% figures quoted above. It is clear that the majority of RetroMeter properties 

fall well outside of the necessary accuracy for use under the ASHRAE guidance, with 

median daily, monthly, and annual CVRMSE values of 53.4%, 34.2%, and 18.7% 

respectively. It is also notable that the RetroMeter properties performed poorly compared 

to Metered Energy Savings 2022 with daily and monthly median CVRMSE values of 37.4% 

and 20.3%. This is likely due to the absence of the significant rise in gas prices from the 

baseline to the reporting period that was observed for the RetroMeter properties. It is also 

possible that the considerably smaller pool of properties has led to some sampling bias in 

computing the median. 

 

 
The net bias introduced by OpenEEmeter can be seen in Figure 8, where the prediction 

error on the y-axis is plotted against the bias on the x-axis for each property in the 

RetroMeter dataset fitted with a daily counterfactual. The majority of the points lying to 

the right of the 0-line on the x-axis indicates that most properties have an over-estimated 

counterfactual, in line with the hypothesis that OpenEEmeter cannot account for the 

changes to behaviour induced by energy price alone. 

 

Figure 7 - Distribution of CVRMSE from OpenEEmeter applied to 3,048 properties, aggregated by day, month, and year. 
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Figure 8 - OpenEEmeter daily counterfactual prediction error against bias with LOWESS trendline. 

 

4.3 Analysis and Variations 

A pair of key questions following on from these results were: 

• Is it possible to identify ahead of time which properties are likely to perform better? 

• To what extent are these results impacted by the choice of baseline and reporting 

year? 

To explore the first question, we broke down the error distribution by property archetype 

and baseline year energy consumption, to ascertain whether any of these characteristics 

that are known prior to any interventions can influence the performance of the model.  

Binning the properties by their total gas consumption in the baseline year as in Figure 9 

revealed a downward trend in error as consumption increases, but an upward trend in bias. 

One explanation for this is that those properties with the lowest levels of gas consumption 

(<10,000 kWh/annum) exhibit high degrees of unpredictability and variance, possibly 

driven by occupancy changes between the baseline and reporting year. An increasing bias 

may indicate that those properties with particularly high consumption in the baseline year 

were those who cut back on their consumption the most as prices rose; this would cause 

OpenEEmeter to overestimate their consumption during the reporting period more 

severely than those who were consuming a more ‘normal’ level of energy.  
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Figure 9- Median CVRMSE and NMBE by Total Baseline Consumption Bin 

Similarly, binning by the age of the property showed an increase in both error and bias 

with age, although to a lesser extent than energy demand. Intuitively, older properties are 

less likely to be well-insulated, leading to a noisier relationship between the energy 

consumed and the internal temperature achieved. It was not possible to test this 

hypothesis rigorously as the distribution of EPC ratings over the properties was 

significantly imbalanced, with over 98% having either a C, D, or E rating; however, across 

these three ratings there is a clear trend of older properties tending to be E and below, and 

newer properties more likely to be C and above. There was found to be no similar 

relationship between accuracy/bias and EPC rating. 

 

 

Figure 10 - Median CVRMSE and NMBE by property construction age band. 
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To explore the additional bias introduced by OpenEEmeter, we also compared the accuracy 

of the counterfactual against a naïve estimator that uses each day’s metered consumption 

in the baseline year as the prediction for the same day in the reporting period. We would 

expect a naïve estimator to under-predict consumption in the reporting period of this 

study as the temperatures are known to be lower on average.  

 

 

Figure 11 - Bias for each property from using OpenEEmeter and the naive estimator, where the baseline year consumption is 

used as the prediction for the reporting year. 

Figure 11 describes the NMBE by plotting each property as a single point, with the NMBE 

from OpenEEmeter on the x-axis, and from the naïve estimator on the y-axis. There are two 

key insights from this figure – we know from the previous section that there is in general 

an over-estimation from the OpenEEmeter counterfactuals, most likely driven by the price 

impact coupled with colder temperatures. However, almost all the properties whose 

OpenEEmeter counterfactual over-predicted their consumption are more biased than if 

their baseline consumption had been used instead, as in the naïve model. The difference 

between the naïve and modelled NMBE indicates how much OpenEEmeter is attempting to 

compensate for the colder temperatures over the reporting period, with the overall NMBE 

above zero capturing the combined impact of both temperature and price.   

In Figure 12, the CVRMSE is plotted in the same way for each property. While this confirms 

that OpenEEmeter is indeed superior accuracy-wise to the naïve estimator, there is another 

informative interpretation: the CVRMSE of the naïve estimator is equivalent to a measure 

of the similarity between the baseline year and the reporting year’s consumption profile. 

With this view, we can see that there is a strong relationship between the accuracy of the 

OpenEEmeter counterfactual and the closeness of the consumption profiles from one year 

to the next. The distribution also widens as their error on both models increases - those 

properties with highly dissimilar baseline and reporting consumption profiles exhibit the 

widest range of OpenEEmeter prediction errors. This may be indicative of the effects of 

occupancy changes during the measurement period, reinforcing the notion that consistent 

occupant behaviour is necessary to OpenEEmeter to generate useful results.  
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Figure 12 - Error for each property from using OpenEEmeter and the naive estimator, where the baseline year consumption 

is used as the prediction for the reporting year 

 

4.4 OpenEEmeter Methodology Outcomes 

These results have shown that OpenEEmeter alone is not sufficient to generate gas 

consumption counterfactuals for UK homes accurate enough to quantify metered energy 

savings, as the impact of externalities beyond temperature cannot be sufficiently 

accounted for. 

The next section introduces the comparator methodology as a means of adjusting the 

OpenEEmeter counterfactual to remove the impact of externalities that affect all properties 

over a wide jurisdiction. 
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5. Using Comparator Groups to Reduce Model Bias 

We will refer to ‘externalities’ in this project as those society- and economy-wide factors 

that impact residential energy use beyond just weather. The premise of the comparator 

methodology is that the impact of these externalities that OpenEEmeter cannot account 

for can be addressed using the counterfactuals from a set of similar properties not 

undergoing retrofit. This section details how this methodology was developed for the 

RetroMeter project and the resulting improvements to using OpenEEmeter by itself. 

5.1 What are Comparator Groups? 

A comparator group is a set of properties that have been matched based on some 

similarity metric or qualitative grouping to a given candidate property, one that is 

undergoing a retrofit intervention. Crucially, the comparator properties neither have 

existing retrofits nor plan to receive any interventions for the duration of the candidate 

property’s baseline and reporting periods. This ensures that the comparator 

counterfactuals only capture the non-retrofit impacts to energy consumption experienced 

by the candidate property. 

Figure 13 visualises this process with simplified consumption time series before and after 

the retrofit intervention. By adjusting the candidate property’s counterfactual through 

subtracting the prediction error from the comparator group properties, the ‘error’ that 

remains between the adjusted counterfactual and the measured consumption of the 

property is the impact of the retrofit on energy consumption.  

 

 

Figure 13 - How counterfactuals are adjusted from comparator property counterfactual error to leave the 'impact' of an 

energy-saving intervention. 
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Note that this approach still assumes that there have been no behavioural or occupancy 

changes in the candidate property other than those that might be reflected in similar 

homes without retrofits. While the physics-based methodology attempts to account for 

comfort take-back, a change of tenant4 or significant alterations to work patterns, for 

example, remain confounding factors and will be impossible to distinguish from the energy 

efficiency impact. The most important factor is that the properties in the comparator group 

should respond in the same way to external non-temperature factors in the same manner 

as the candidate property, allowing them to be extracted from the counterfactual error. 

Figure 14 offers an example of what this adjustment process looks like in practice. As 

before, the modelled consumption should ideally match the observed consumption in the 

reporting period because no retrofit has been performed. We can see that the adjusted 

counterfactual in light green is closer to the measured consumption in red than the 

original OpenEEmeter counterfactual in blue. See Appendix 8.1 for more detail on how this 

adjustment is carried out and justified.  

  

 

Figure 14 - Example application of comparator methodology. 

The comparator methodology was evaluated in two distinct cases, based on whether the 

candidate property has smart meter available pre-retrofit to match comparator properties 

to. In each case, a different set of potential matching processes were tested and evaluated 

for accuracy. In addition, a range of temporal and portfolio aggregation levels were 

assessed to determine the best trade-off between granularity and predictive power. As was 

seen in Figure 7, aggregating up to higher timeframes improves accuracy, at the expense 

of needing to wait longer post-retrofit to attain an impact estimate. Similarly, aggregating 

multiple candidate properties into a portfolio improves accuracy by smoothing out the 

noise at the individual level, at the expense of the ability to attribute impact to any one 

property within that portfolio. Ultimately it is at the discretion of the end-user and 

application as to how far this trade-off is acceptable; the goal of RetroMeter is to indicate 

what the expected performance is likely to be along that spectrum. 

 

4 The DCC does track this information currently, although is in the process of consulting on how to share it 

more widely. 
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As there are no interventions in our dataset, the concept of a ‘treatment’ group, the term 

typically used to describe the properties undergoing retrofit in other studies, does not 

translate perfectly into our experiment design. Essentially, in order to extract the most 

value from the 3,000 properties available to us, each property takes its turn being a 

‘treatment group’ of one, with the remaining properties in the pool acting as the control 

group from which the best-matching comparators are drawn. When testing the impact of 

portfolio size on performance, the properties within the portfolio become the treatment 

group, in that none of them are eligible to be comparators for other properties in the 

portfolio. We shall continue to use the term candidate to refer to the property whose MES 

is being measured. 

5.2 Principal Results 

The first test of the comparator methodology was performed using only each property’s 

archetype data. A segment of the overall pool was created for each candidate property in 

turn with the same property type and built form, as well as the same or adjacent EPC rating 

and age band. If we created property segments based strictly on properties with the same 

type, built form, EPC rating, and property band, there would be many cases where the 

segment would be too small to select enough comparator properties from. Therefore, we 

also allowed matching on adjacent EPC and property age bands to compensate – for 

example, properties with an ‘F’ EPC rating were also segmented with ‘E’ and ‘G’ properties. 

As there are no quantitative metrics in this iteration, the comparator properties were drawn 

at random from the segmented group. 

5.2.1 Matching Only on Archetype Removes Bias but Increases Variance 

Figure 15 compares the results from the comparator methodology using only the property 

archetypes to match, against the OpenEEmeter and MES 2022 results from the previous 

section. Despite the accuracy of the model decreasing, the net positive bias that 

OpenEEmeter introduced due to the price increase was successfully removed, as shown in 

Figure 16 (only the daily aggregation is illustrated; as NMBE is an absolute measure of bias, 

it does not change when the predictions are aggregated). 

 

Figure 15 - Comparator methodology performance using property archetype information only 
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It is notable also that the net bias of the MES 2022 results is also around zero, further 

highlighting the impact of the gas price increase in this project. In addition, the impact of 

restricting the comparator properties to be selected from the same weather station as the 

candidate was examined, although the performance was worsened considerably, most 

likely due to the high class imbalance between stations. Other studies that have applied 

matching over the same climate zone have had access to considerably more properties 

than are available to us in this study, therefore we cannot conclude from this result that we 

should not match on climate zone. In practice, a larger pool of more evenly distributed 

property-to-weather stations would be needed to explore this requirement.  

 

 

Figure 16 - Comparator methodology NMBE using property archetype information only. 

The importance of each of the four property archetype characteristics available was 

evaluated by removing them one at a time from the full set of four and re-running the 

comparator methodology. For example, the impact of EPC was evaluated by segmenting 

the pool only by the candidate’s property type, built form, and age band, selecting 

comparators with any ECP rating from that segment. Figure 17 shows that removing the 

age-band matching condition improves the median error compared to using all four 

archetypes by nearly two percentage points, while leaving out the built form worsens the 

error.  



 

25 es.catapult.org.uk 

 

Figure 17 – Impact on median CVRMSE of removing each property archetype from the set used to match properties on 

performance. 

5.2.2 Matching on Pre-Intervention Smart Meter Data Performs Better 

If smart meter data for comparator properties is available prior to the candidate property’s 

intervention, then we can further refine the matching approach beyond simply selecting 

randomly from the archetype property segment. The simplest approach is to select 

properties from the segment according to how similar their total and peak consumption 

during the baseline year was5.  

However, this leaves out a lot of information contained in the daily consumption profiles of 

the properties. The shape of the demand curve for a property can be used to infer 

occupancy and other behavioural factors that are important for estimating how the 

household may respond to externalities in the reporting period. Rather than try to infer 

these factors directly, they can be implicitly utilised by using the consumption profiles 

themselves to match candidate and comparator properties. Many metrics exist for 

quantifying the similarity of two time series, but for simplicity we have opted to continue 

using the CVRMSE as a de-facto indicator of how close two baseline consumption profiles 

are – the lower the error, the more similar they are and the more likely they are to be 

matched. 

Matching on profile similarity alone was found to be the best-performing metric for 

individual properties. The combinations of factors and parameters tested are summarised 

in Figure 18, showing the median CVRMSE achieved across each aggregation and method, 

including results from several other heuristics described in Section 5.3. Although the 

difference in performance across the latter three feature combinations is small, it is notable 

that the best-performing matching approach is also the simplest – giving the candidate 

 

5 Specifically, by taking the Euclidean distance between any quantitative variables and selecting the closest 

matches. 
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property the widest possible pool of comparators to match against, without pre-filtering 

by archetype or baseline filter, appears to work best.   

 

Figure 18 - Median CVRMSE from each feature combination tested. 

5.2.3 Aggregating Portfolios of Properties Performs Best 

Whilst these results demonstrate an improvement on matching against property archetype 

data alone, they are on average not quite accurate enough for meeting the ASHRAE 

guidelines at the monthly level. An alternative approach that has also been explored in 

previous studies is to combine the consumption profiles of multiple properties into a 

portfolio, against which the total impact of any interventions is measured. This has the 

effect of smoothing out the variance in individual property’s consumption, as can be seen 

in Figure 19 as the number of properties per portfolio is increased. 

 

 

Figure 19 - Comparator accuracy by portfolio size. 

The portfolio aggregation methodology involves matching each candidate property within 

the portfolio to its own set of comparator properties as before, with the restriction that no 

candidate within the portfolio can be a comparator property for another candidate, nor 

can any candidate property share comparators between their own groups. While this 
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method successfully reduces the error to as little as 5% at the annual, 25-property portfolio 

point, it comes with some practical caveats that end-users must be aware of: 

• The candidate properties within the portfolio must have had their interventions 

completed at around the same time, so that their baseline and reporting periods 

line up. This is necessary for ensuring that each property is fully represented at each 

timestep of the aggregated reporting period. 

• They must also be sufficiently physically close to each other so that the same 

external temperature readings can be applied to each. 

• MES cannot be disaggregated and attributed to individual properties with this 

approach. 

These limitations imply that the portfolio aggregation approach is best suited to cases 

where a group of properties, managed by the same owner and on a single estate or terrace 

for example, can be retrofitted at the same time, and tied to a monitoring mechanism this 

is satisfied with attributing the MES to the project as a whole rather than individual 

properties.   

5.3 Analysis and Variations 

There are many factors and modifications that can be made to potentially improve the 

performance of the comparator methodology. To find the optimum combination within 

the scope of this project, we selected a number of options from both expert opinion and 

through assessing approaches tested in the literature to test against our dataset.  

5.3.1 Finding the Appropriate Number of Comparators 

Intuitively, the more comparator properties that are matched to the candidate property, 

the more smoothed out the counterfactual adjustment will be, eliminating more of the 

noise in the comparator group. To test this, we repeated the comparator matching using 

the property archetypes excluding the age band, matching on the total and peak baseline 

consumption, with 5, 10, and 25 comparators per property respectively. Figure 20 reveals 

an interesting result – the performance of the comparator methodology is improved at the 

daily level when adding more comparators, but is worsened for the monthly and annual 

aggregations. 

One explanation for this may be that the monthly and annual aggregations already remove 

enough of the noise in the candidate property’s counterfactual prediction that the 

comparator properties only end up increasing it post-adjustment. Whereas at the daily 

level, the smoothing of comparator properties’ counterfactuals as they are added together 

before adjusting the candidate property reduces the noise in the candidate counterfactual 

without introducing additional variance.  

In practice, it is more likely that the MES will be assessed on a monthly or annual rolling 

basis. For this reason, we chose to keep the comparator group size fixed at five properties 

for all iterations to get the best possible performance out of the monthly and annual 

aggregations. 
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Figure 20 - Variation of performance with comparator group size 

 

5.3.2 Other Factors that May Improve Matching Performance 

Homes with hard to predict, noisy energy demand are unlikely to be as useful as 

comparator properties, as they are likely to introduce additional noise to the measurement 

of MES. Filtering on reporting period error would introduce a look-ahead bias, but it is 

reasonable to assume that properties that were hard to predict in the baseline period will 

also be hard to predict in the reporting period. Therefore, an effective way to remove high 

noise properties is to only use properties with a low baseline period CVRMSE for 

comparators. 

Figure 21 illustrates the distribution of reporting period error, with the orange reading 

indicating those properties with a baseline period CVRMSE greater than 45%. This 

threshold was chosen after some testing to be the best trade-off between improving the 

quality of the comparator property counterfactuals, versus removing too many properties 

from the pool such that the best available comparators by consumption profile similarity to 

the candidate are weaker. As the size of the pool of possible comparators is increased, this 

threshold can be made stricter to further improve the comparator counterfactual quality 

without significantly worsening the number of remaining properties. 

Note that this filtering is not applied to the candidate (i.e. retrofit) properties, only those 

being used for comparators. This approach assumes that any hard to predict candidate 

properties can be reasonably matched with easier to predict comparison properties, which 

is probably a reasonable assumption but may not hold for all homes. 

Additionally, adjusting the candidate counterfactual by the percentage residuals of the 

comparator was found to perform better than using the raw residuals, likely as it 

normalises the differences in absolute consumption between candidate and comparator 

properties. 
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Figure 21 - Distribution of OpenEEmeter reporting period CVRMSE values, with baseline period CVRMSE threshold of 45% 

highlighted. 

5.4 Comparator Methodology Conclusions 

The comparator methodology has been shown to effectively control for the externalities 

that affected the performance of using OpenEEmeter by itself, improving the median error 

at the monthly level from 34% to 22%, whilst also eliminating the net positive bias. 

Aggregating the candidate properties into portfolios further improved the error, up to 

8.3% at the monthly level with 25-property portfolios, beyond which the returns appear to 

diminish. We have demonstrated that you do not need a large number of homes to 

aggregate in order to produce acceptable accuracy, with only around 5 homes needed to 

bring the median monthly accuracy within the ASHRAE guideline value. 

The comparator methodology has some limitations that would make it more complex to 

apply to real property interventions than OpenEEmeter alone: 

• Maintaining access to a repository of comparator property smart meter data, 

against which any arbitrary candidate property could be matched and evaluated, 

will require close collaboration with an industry or academic partner – this is 

discussed in more detail in Section 7.2. 

• Ensuring that none of the comparator properties matched to a candidate have any 

interventions or significant behavioural changes, such as occupancy, over the 

reporting period will not be possible, so a procedure for replacing comparator 

properties that are no longer valid during evaluation may be necessary. 

• Behavioural changes for the candidate property post-intervention still cannot be 

accounted for. The physics-based methodology in the next section describes how 

this might be achieved.  
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6. Adjusting for Comfort Takeback through Physics-

Informed Models 

After a retrofit, occupants may change how they heat their homes, often increasing the 

internal temperature. This phenomenon, known as comfort takeback or comfort boost, 

means a portion of the energy savings are taken as enhanced comfort levels. The physics-

based model, introduced in this section, aims to quantify the comfort takeback through a 

counterfactual physics-based model. This is shown in Figure 22.  

 

Figure 22- Estimating the Comfort Takeback by subtracting the Comparison-based  

Counterfactual Energy Demand from the Physics-based Counterfactual Energy Demand 

6.1 How do we estimate the comfort takeback? 

First, the pre-retrofit heat transfer coefficient (HTC) for each house is calculated. This can be 

done using existing techniques for measuring HTC, or using the methodology outlined 

below which relies on smart meter and external temperature data. The counterfactual energy 

demand can be estimated using the pre-retrofit HTC in combination with the post-retrofit 

internal temperature, as shown in Figure 23. It represents the energy demand that would 

have occurred if the occupants had been heating to those comfortable temperatures without 

retrofitting.   

 

Figure 23 - The counterfactual HTC energy demand (or physics-based demand) is calculated  

using the pre-retrofit HTC and the post-retrofit internal temperature.  
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6.2 HTC Estimation from Smart Meter Data 

6.2.1 What is the HTC? 

The heat transfer coefficient (HTC) is a measure of a building’s thermal performance, given 

in W/K. It quantifies the power required to keep the house at a steady internal temperature 

for every degree difference between the inside and the outside temperature. A lower HTC 

means that the house requires less energy to stay warm. In the UK, the average HTC is 330 

W/K according to the Cambridge Housing Model (Chambers & Oreszczyn, 2019).   

6.2.2 How do you calculate the HTC?  

The HTC can be estimated by calculating the best line of fit between the temperature 

difference (Tin – Text) and the power required to maintain a steady internal temperature, as 

shown in Figure 24. The slope of the line represents the HTC.  

 

Figure 24 - The HTC is the slope of the regression line between the power and the temperature difference.  

6.2.3 Basic Method & Applied Filters 

To get the total energy consumption, both electricity and gas usage are accounted for, as 

including electricity yielded better results (lower CVRMSE and lower absolute NMBE). This 

can be partially explained by the usage of additional electric heaters in the UK. Even without 

secondary heating, electricity consumption mostly dissipates as heat. Energy is then 

aggregated to a daily level and the average power calculated. A balance point (the external 

temperature at which heating is assumed to turn on) of 15°C is used for all houses. This 

could be further individualised, but we found that improvements are marginal. Due to the 

chosen balance point, we filtered for days with mean average external temperature below 

15°C. We further filtered for days with gas consumption above daily baseload gas 

consumption.  



 

32 es.catapult.org.uk 

6.2.4 Daily Baseload  

The daily baseload is calculated by filtering for high temperature (above 15°C) and high solar 

irradiance (above 50 W/m2) days. These are days that typically do not require heating. Thus, 

the energy used during those days can be attributed to baseload activities, e.g. cooking and 

hot water usage. The median of the resulting distribution is deemed to represent the daily 

baseload for each house, as illustrated in Figure 25. 

 

Figure 25 - Distribution of Gas Usage after filtering for Non-heating Days. 

6.2.5 Internal Temperature Not Available 

Pre-retrofit the internal temperature is not available. Instead, we can use the external 

temperature on the assumption that the internal temperature remains constant. This shifts 

the regression line without changing its slope – and the HTC is based on the slope. However, 

using only external temperature yields less reliable results compared to using the internal 

temperature. This suggests that the internal temperature does in fact vary.   

In general, omitting the internal temperature from the model leads to the underestimation 

of the HTC. This is likely due to some days where the house is heated to lower internal 

temperature than usual. Since internal temperature is not available pre-retrofit, we need to 

approximate these low internal temperatures days.  

6.2.6 Residual Filter, 

Removing days where the internal temperature is low should improve accuracy of HTC 

estimation. However, as internal temperature is not available, another way to identify these 

days is required. Identifying days with lower than expected power usage for a particular 

external temperature seems a good proxy. First, we regress on all days, resulting in the red 

regression line in Figure 26. Subsequently, the residuals for all data point are calculated as 

the distance from the regression line. Data points below the first quartile (i.e. 25%) are 

eliminated, marked by red crosses in Figure 26. Note that if the internal temperature was in 

fact constant, this would be removing valid data, but it would not be expected to change 

the slope of the line (and therefore the HTC). 
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Figure 26 - HTC regression before (red) and after (blue) residual removal, and co-heating HTC (yellow) 

6.3 HTC Model Results 

The HTC can be estimated from only smart meter and weather data, although not as 

accurately as when the internal temperature is available. Without the residual filter 

adjustment for low internal temperature days, the model tends to underestimate the HTC, 

as can be seen in the left-hand graph of Figure 27. However, using the residual filter 

improves the model fit and reduces the bias as shown in the right-hand graph in Figure 27. 

Note that the model might have overfit to the 15 SMETER houses due a lack of anticipated 

validation data. 

 

Figure 27 - Modelled HCT vs Co-heating HTC.  

Left: without residual filter. Right: with residual filter.  
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6.4 Energy Demand Model  

Now that we have the pre-retrofit HTC, we can use it to calculate the counterfactual heating 

energy demand. This can be done like in Equation 1. A breakdown of the approximate impact 

of each factor is shown in Figure 28.  

 

 Ptot = HTC ∗ (Tin −   Tex) −  solar gains - electric gains + base load 

Equation 1 

   

 

Figure 28 - Waterfall Graph of Predicted Energy Demand compared to Actual Energy Demand  

6.5 Energy Demand Model Components  

This section features a closer look at the individual factors determining the energy demand 

prediction, as shown in Equation 2. 

 

  Ptot =
[HTC∗(Tin−Tex)−Irrad∗Aperture−electricity∗𝐹𝑒𝑙𝑒𝑐𝑎𝑏𝑠

)]

𝑏𝑜𝑖𝑙𝑒𝑟 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦
+ base load ∗ (1 − 𝐹𝑏_𝑎𝑏𝑠) 

Equation 2 

6.5.1 Solar Gains  

Solar gains refer to the heat absorbed from the sun, determined by multiplying irradiance 

by the solar aperture. To calculate the solar aperture, we used the Siviour method which is 

explained in more detail in Appendix 8.2.  

6.5.2 Electric gains  

The electric gains are derived from the total electricity consumption. While not 100% of 

electricity is converted into heat, assuming this is the case is simpler and tends to 
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compensate for metabolic gains from people being in the house (since more electricity is 

used when people are in the house).  

6.5.3 Baseload  

The baseload is calculated as described in section 6.2.4 (Daily Baseload) and multiplied by (1 

- Fb_abs), where Fb_abs is a baseload absorption factor. It indicates how much of the baseload 

is absorbed as heat (e.g. gas cooking heats a room). It is multiplied by (1 - Fb_abs) because 

100% of the baseload is first added to the energy demand and then Fb_abs times the baseload 

is subtracted as gains.  

6.5.4 Boiler Efficiency 

Not all gas used by a boiler results in useful heat for the house, so a boiler efficiency needs 

to be assumed. This will vary from house to house, but a representative figure of 89% was 

assumed for this project, as it was the efficiency for the SMETER boilers (Allinson, et al., 2022). 

6.6 Energy Demand Model Results  

Figure 29 presents the outcomes of the energy demand prediction, compared with results 

from OpenEEmeter and the Comparison-based methodology. When the co-heating HTC is 

used as input into the energy demand model, it results in a median CVRMSE around 20%. 

The skew towards a positive NMBE, indicates a slight overprediction bias. Using the modelled 

HTC produces a similar CVRMSE as the comparison-based model. Without the residual 

adjustment, the predictions are biased towards underestimating the energy demand 

(indicated by the negative NMBE). However, adjusting the HTCs eliminates this bias.   

 

Figure 29 - Energy Demand Prediction CVRMSE & NMBE   

Figure 30 shows the demand model results on a per house basis when using the co-heating 

HTC. Most houses fall within the acceptable range of CVRMSE (<30%) and NMBE (<15%). 

However, the accuracy of the energy demand model decreases when using the modelled 
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HTC as input. Whilst the model is probably not reliable enough to predict energy demand 

on a per house basis, the results might be useful when aggregated to a portfolio of houses.  

 

Figure 30 - Energy Demand Model Results on a per House Basis using the Co-heating HTC as Input 

 

Figure 31: Energy Demand Model Results on a per House Basis using the modelled and adjusted HTC as Input 

6.7 Suitability for Comfort Takeback Assessment  

The HTC can be accurately estimated using internal temperature data. However, before 

retrofitting, this data won’t be accessible in most cases. The HTC can still be determined 

using smart meter and weather data by applying the residual filter. Predicting energy 

demand with the modelled HTC yields results comparable to those of the comparison-based 

methodology. Since performance differs across individual homes, home-specific conclusions 

are more uncertain. Rough analysis suggests that comfort takeback levels greater than ~40% 

of the baseline energy consumption might typically be detectable for a single home (which 

is unlikely to be useful), or ~25% for groups of 10 homes. This suggests larger portfolios 

would be required to detect comfort takeback reliably. 
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7. Additional Considerations 

In addition to the three core methodologies described in this project that make up the 

RetroMeter method, there are several more points that are either out of scope for a full 

analysis, or points that will require more work in the future should the method continue to 

be refined and applied. 

7.1 Treating Properties with Heat Pump Interventions 

For the case where a property intervention includes the conversion of its existing mains gas 

heating system to an air- or ground-source heat pump, the RetroMeter approach requires 

some modification. Heat pumps further complicate the evaluation of MES when there is 

also a fabric retrofit installed simultaneously, leading to two distinct cases: 

• We only care about the total energy saved, so the MES of the heat pump and fabric 

retrofit can be treated as a single intervention. 

• The MES impact of the heat pump and the fabric retrofit need to be disaggregated 

and treated separately. This requirement is more complex as the reporting period 

counterfactual now needs to be transformed into ‘what would the energy 

consumption had been if the property had always had a heat pump?’. 

In the first case, the application of RetroMeter is straightforward, with the reporting and 

baseline years in Figure 32 illustrated for a property simulated using the Catapult’s Home 

Energy Dynamics (HED model, with an ASHP intervention at the start of January 2023. It 

can be seen that the metered consumption on a kWh basis has reduced considerably post-

intervention. One simple interpretation is to measure the MES as the straight difference 

between the gas counterfactual and the metered ASHP consumption, but this ignores the 

obvious differences between a kWh of gas and a kWh of electricity.   

 

 

Figure 32 - Example OpenEEmeter application to a simulated property with an air source heat pump intervention. 

For this reason, it is probably preferable to consider the cost and emissions equivalent of 

the MES, rather than just the raw energy difference. On a cost basis, domestic gas has both 

a lower unit rate and a lower daily standing charge – both must be taken into account for a 

proper comparison to be made. Taking the Ofgem price cap rates as of March 2024 of 
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7.42p/kWh and 29.6p/day for gas, and 28.6p/kWh and 53.4p/day for electricity, the 

baseline and reporting periods are transformed to a cost basis in Figure 33. The baseline 

period remains unchanged as both the metered and modelled consumptions are gas, but 

the reporting period shows that a saving is still achieved over the winter periods, albeit 

with a more expensive summer.  

 

 

Figure 33 - AHSP intervention with baseline and reporting periods presented on a cost basis. 

For the case where the heat pump and fabric retrofit interventions need to be 

disaggregated, a possible approach is outlined in the flow chart below. It requires some 

assumptions that may be difficult to justify in practice, including daily COP values for the 

heat pump and the average efficiency of the gas boiler. 

 

Figure 34 - Suggested process for disaggregating MES when a heat pump and fabric retrofit are both installed 

simultaneously. 
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In future work we hope to expand and test this methodology further, as the UK 

government hopes to meet its target of 600,000 heat pump installations a year by 2028. 

this use case is going to become increasingly common, and the RetroMeter approach must 

be suitable to unlock the funding necessary to accelerate the energy transition. 

7.2 Maintaining Comparator Groups Through Evaluation 

Periods 

Continuing on from Section 5.4, further work is needed to properly define a mechanism for 

maintaining up to date comparator groups that can be queried and monitored on a rolling  

basis to meet the needs of retrofit projects as needed. It is currently very time-consuming 

to access smart meter data through the DCC as an accredited ‘Other User’ (see here6 for an 

overview of the process as of 2023) even for the most basic data requests.  

The requirements of the comparator methodology are complex – not only are thousands 

of properties worth of consumption data needed, each with at least 12 months to satisfy 

the baseline year sufficiency requirements, but the consumption of those properties must 

also be kept up to date through the reporting period of the candidate property. In 

addition, there must be some way of knowing their rough location in order to match them 

to a weather station for external temperature readings. Running the matching algorithm 

requires access to a repository of all valid potential comparator properties at once – it 

cannot practically be run on a per-property consent basis as most Managed Service 

Providers (MSPs) offer currently. 

One potential solution that prevents needing to extract any smart meter data from their 

managed, privacy-maintaining repositories is to partner with an existing DCC Other User 

with live and historical access to at least 3,000 properties. Instead of pulling the full dataset 

to a local compute instance, the matching algorithm and candidate property details are 

passed to the dataset provider and run on their system, with only the adjusted candidate 

counterfactual returned. This likely prevents the need for any additional household consent 

to be requested whenever a new comparator group is formed for candidate property, as 

no information is returned that might identify the comparison properties.  

Another solution builds on the recent announcements from DNOs including UKPN and 

SSEN that they will be publicising aggregated smart meter readings from properties on 

their network. Matching the candidate property’s baseline consumption profile to the 

aggregated readings would require normalising the magnitude of each profile, as it would 

not be possible to attribute the contribution of each comparator property’s individual 

consumption to the aggregated group. If this challenge is solved, there would also need to 

be communication with the DNO to derive the external temperature readings for the 

properties, although as DNOs are small enough that their climate does not vary too much, 

an average across the region may suffice. 

 

Recent publication of aggregated electricity smart meter data by DNOs might present 

 

6 https://www.linkedin.com/pulse/how-access-gb-smart-meter-data-matt-brake/ 
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another source of data, but unfortunately this is only electricity data and there are no 

corresponding plans to publish aggregated gas smart meter data. 

7.3 Further Work 

One of the key goals of the RetroMeter project as a whole is to develop an open-source 

methodology that users in the UK retrofit ecosystem can take and test under real-world 

conditions to accelerate the validation and uptake of MES. The codebase developed for 

this Alpha phase project stage has successfully demonstrated that this is viable, but 

requires further work to build into a production-level software package ready for others to 

take and use without adaptation.  

As electrical heating becomes more widespread in the UK, the methodology will also need 

extending to cover that. 
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8. Appendix 

8.1 Comparator Residuals Adjustment Methodology 

The candidate property’s counterfactual (𝐶𝐹𝑐𝑎𝑛𝑑) can be adjusted by either the absolute 

(𝑟𝑒𝑠𝑐𝑜𝑚𝑝) or percentage (𝑟𝑒𝑠%𝑐𝑜𝑚𝑝) comparator counterfactual error. In the case where 

there is no intervention (𝐻0) we expect there to be no impact on the candidate’s 

consumption beyond what will also affect the comparator group (𝑟𝑒𝑠𝑐𝑜𝑚𝑝 = 𝑟𝑒𝑠𝑐𝑎𝑛𝑑).                         

Equation 3 outlines the process of removing the raw counterfactual error from the 

candidate property. 

 

 

 

 

 

 

 

 

 

 

Adjusting by the percentage residuals was found to perform better than using the raw 

residuals, likely as it normalises the differences in absolute consumption between 

candidate and comparator properties.  

 

 

 

 

 

 

 

 

 

 

  

𝑖𝑚𝑝𝑎𝑐𝑡 = 𝑟𝑒𝑠𝑐𝑎𝑛𝑑 − 𝑟𝑒𝑠𝑐𝑜𝑚𝑝 

𝑂𝑏𝑠𝑐𝑎𝑛𝑑 = 𝐶𝐹𝑐𝑎𝑛𝑑 − 𝑟𝑒𝑠𝑐𝑎𝑛𝑑 

𝐻0: 𝑖𝑚𝑝𝑎𝑐𝑡 = 0,   

 ⇒ 𝑟𝑒𝑠𝑐𝑎𝑛𝑑 = 𝑟𝑒𝑠𝑐𝑜𝑚𝑝 

 ⇒ 𝐸(𝐶𝐹𝑐𝑎𝑛𝑑) = 𝐶𝐹𝑐𝑎𝑛𝑑 − 𝑟𝑒𝑠𝑐𝑜𝑚𝑝 

 ⇒ 𝐶𝑉𝑅𝑀𝑆𝐸(𝐸(𝐶𝐹𝑐𝑎𝑛𝑑)) = 0 

Equation 3 - Adjusting candidate residuals by the raw 

comparator residuals. 

𝑟𝑒𝑠% =  
𝐶𝐹 − 𝑂𝑏𝑠

𝐶𝐹
 

𝑂𝑏𝑠𝑐𝑎𝑛𝑑 = 𝐶𝐹𝑐𝑎𝑛𝑑(1 − 𝑟𝑒𝑠%𝑐𝑎𝑛𝑑) 

𝐻0: 𝑖𝑚𝑝𝑎𝑐𝑡 = 0 

 ⇒ 𝑟𝑒𝑠%𝑐𝑜𝑚𝑝 = 𝑟𝑒𝑠%𝑐𝑎𝑛𝑑 

 ⇒ 𝐸(𝐶𝐹𝑐𝑎𝑛𝑑) =  𝐶𝐹𝑐𝑎𝑛𝑑(1 − 𝑟𝑒𝑠%𝑐𝑜𝑚𝑝) 

Equation 4 - Adjusting candidate residuals by the percentage 

comparator residuals. 
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8.2 Solar Aperture – Siviour Method 

This section outlines the Siviour Method to calculate the solar aperture. The Siviour Method 

utilises a rearrangement of the steady-state heat equation to calculate the solar aperture 

(see Equation 5). The aperture is the intercept of the regression line between  
𝑃ℎ𝑒𝑎𝑡

Tin−  Tex
 and 

𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒

Tin−  Tex
 as shown in Figure 35 (Allinson, et al., 2022). In this case, the solar aperture is 

equivalent to 4 m2. Note that while both vertical and horizontal irradiance can be used, it is 

important to consistently use the same type of irradiance in downstream applications (i.e. 

energy demand prediction).  

 

𝑃ℎ𝑒𝑎𝑡

Tin −   Tex
=  −𝐴𝑝𝑒𝑟𝑡𝑢𝑟𝑒

𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒

Tin −   Tex
+ 𝐻𝑇𝐶 

Equation 5 

 

Figure 35: Example of Solar Aperture estimation as Intercept between  
𝑃ℎ𝑒𝑎𝑡

𝑇𝑖𝑛−  𝑇
𝑒𝑥

 and  
𝐼𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒

𝑇𝑖𝑛−  𝑇
𝑒𝑥
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10. Licence/Disclaimer 

 

Energy Systems Catapult (ESC) Limited Licence for SIF Alpha – RetroMeter  

ESC is making this report available under the following conditions. This is intended to 

make the Information contained in this report available on a similar basis as under the 

Open Government Licence, but it is not Crown Copyright: it is owned by ESC. Under such 

licence, ESC is able to make the Information available under the terms of this licence. You 

are encouraged to Use and re-Use the Information that is available under this ESC licence 

freely and flexibly, with only a few conditions. 

 

Using information under this ESC licence 

Use by You of the Information indicates your acceptance of the terms and conditions 

below. ESC grants You a licence to Use the Information subject to the conditions below. 

 

You are free to: 

• copy, publish, distribute and transmit the Information 

• adapt the Information 

• exploit the Information commercially and non-commercially, for example, by 

combining it with other information, or by including it in your own product or 

application. 

 

You must, where You do any of the above: 

• acknowledge the source of the Information by including the following 

acknowledgement: 

• “Information taken from SIF Alpha – RetroMeter, by Energy Systems Catapult” 

• provide a copy of or a link to this licence 

• state that the Information contains copyright information licensed under this ESC 

Licence. 

• acquire and maintain all necessary licences from any third party needed to Use the 

Information. 

 

These are important conditions of this licence and if You fail to comply with them the 

rights granted to You under this licence, or any similar licence granted by ESC, will end 

automatically. 

 

Exemptions  

This licence only covers the Information and does not cover:  

• personal data in the Information 

• trademarks of ESC; and  

• any other intellectual property rights, including patents, trademarks, and design 

rights. 
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Non-endorsement  

This licence does not grant You any right to Use the Information in a way that suggests any 

official status or that ESC endorses You or your Use of the Information.  

 

Non-warranty and liability  

The Information is made available for Use without charge. In downloading the Information, 

You accept the basis on which ESC makes it available. The Information is licensed ‘as is’ 

and ESC excludes all representations, warranties, obligations and liabilities in relation to the 

Information to the maximum extent permitted by law.  

 

ESC is not liable for any errors or omissions in the Information and shall not be liable for 

any loss, injury or damage of any kind caused by its Use. This exclusion of liability includes, 

but is not limited to, any direct, indirect, special, incidental, consequential, punitive, or 

exemplary damages in each case such as loss of revenue, data, anticipated profits, and lost 

business. ESC does not guarantee the continued supply of the Information. 

 

Governing law  

This licence and any dispute or claim arising out of or in connection with it (including any 

noncontractual claims or disputes) shall be governed by and construed in accordance with 

the laws of England and Wales and the parties irrevocably submit to the non-exclusive 

jurisdiction of the English courts.  

 

Definitions  

In this licence, the terms below have the following meanings: ‘Information’ means 

information protected by copyright or by database right (for example, literary and artistic 

works, content, data and source code) offered for Use under the terms of this licence. ‘ESC’ 

means Energy Systems Catapult Limited, a company incorporated and registered in 

England and Wales with company number 8705784 whose registered office is at Cannon 

House, 7th Floor, The Priory Queensway, Birmingham, B4 6BS. ‘Use’ means doing any act 

which is restricted by copyright or database right, whether in the original medium or in any 

other medium, and includes without limitation distributing, copying, adapting, modifying 

as may be technically necessary to use it in a different mode or format. ‘You’ means the 

natural or legal person, or body of persons corporate or incorporate, acquiring rights 

under this licence. 

 



 

 

 

 

 

 

Energy Systems Catapult 

7th Floor, Cannon House 

18 Priory Queensway 

Birmingham 

B4 6BS 

es.catapult.org.uk 

© 2024 Energy Systems Catapult 

Energy Systems Catapult is an independent research and 

technology organisation. Our mission is to accelerate Net Zero 

energy innovation. 

Launched in 2015 by Innovate UK, the Catapult has built a team of 
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products and services. Our impact comes when those innovators 
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can thrive in the future energy system. 
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established by Innovate UK. The Catapult Network fosters 
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